Effect of Surface Topology on the Apparent Thermal Diffusivity of Thin Samples at LFA Measurements
Abstract
:1. Introduction
2. Subject of Numerical Research
3. Methodology for Determining Thermal Diffusivity
4. Numerical Model
- − General equation of heat transfer used in the model in Comsol Multiphysics:
- − Thermophysical properties of the tested material (Table 2):
No | Thermophysical Parameter | Symbol | Value | Unit |
---|---|---|---|---|
1 | Thermal conductivity | k | 0.3 | W/m K |
2 | Density | ρ | 1500 | kg/m3 |
3 | Heat capacity at constant pressure | c | 1100 | J/kg K |
4 | Temperature | T(t0) | 273.15 | k1 |
5 | Inward heat flux | 0 | 100,000 (<0.01) | W/m2 |
- − Element settings for temperature: Lagrange–Quadratic.
5. Findings of Numerical Research
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellahi, R. Recent Trends in Coatings and Thin Film: Modeling and Application. Coatings 2020, 10, 777. [Google Scholar] [CrossRef]
- Novas, N.; Alcayde, A.; El Khaled, D.; Manzano-Agugliaro, F. Coatings in Photovoltaic Solar Energy Worldwide Research. Coatings 2019, 9, 797. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Gao, P.; Tang, W.; Mo, G.; Yin, J. Adaptive Thin Film Temperature Sensor for Bearing’s Rolling Elements Temperature Measurement. Sensors 2022, 22, 2838. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Ji, L.; Xing, Z. Experimental Investigation on the DLC Film Coating Technology in Scroll Compressors of Automobile Air Conditioning. Energies 2020, 13, 5103. [Google Scholar] [CrossRef]
- Mohammed, R.Y. Annealing Effect on the Structure and Optical Properties of CBD-ZnS Thin Films for Windscreen Coating. Materials 2021, 14, 6748. [Google Scholar] [CrossRef] [PubMed]
- Poddighe, M.; Innocenzi, P. Hydrophobic Thin Films from Sol–Gel Processing: A Critical Review. Materials 2021, 14, 6799. [Google Scholar] [CrossRef]
- Men, X.; Zhang, Z.; Yang, J.; Zhu, X.; Wanga, K.; Jiang, W. Spray-coated superhydrophobic coatings with regenerability. New J. Chem. 2011, 35, 881–886. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Karapanagiotis, I. Modification of the wettability of polymer surfaces using nanoparticles. Prog. Org. Coat. 2014, 77, 331–338. [Google Scholar] [CrossRef]
- Dhere, S.L.; Latthe, S.S.; Kappenstein, C.; Pajonk, G.M.; Ganesan, V.; Rao, A.V.; Waghe, P.B.; Gupta, S.C. Transparent water repellent silica films by sol–gel process. Appl. Surf. Sci. 2010, 256, 3624–3629. [Google Scholar] [CrossRef]
- Prabhu, K.N.; Fernades, P.; Kumar, G. Effect of substrate surface roughness on wetting behaviour of vegetable oils. Mater. Des. 2009, 30, 297–305. [Google Scholar] [CrossRef]
- Shang, H.M.; Wang, Y.; Limmer, S.J.; Chou, T.P.; Takahashi, K.; Cao, G.Z. Optically transparent superhydrophobic silica-based films. Thin Solid Film. 2005, 472, 37–43. [Google Scholar] [CrossRef]
- Gu, G.; Dang, H.; Zhang, Z.; Wu, Z. Fabrication and characterization of transparent superhydrophobic thin films based on silica nanoparticles. Appl. Phys. 2006, 83, 131–132. [Google Scholar] [CrossRef]
- Liu, H.; Feng, L.; Zhai, J.; Jiang, L.; Zhu, D. Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film between Superhydrophobicity and Superhydrophilicity. Langmuir 2004, 20, 5659–5661. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.H.; Shum, P.W.; Zhou, Z.F.; Li, K.Y. Preparation of hydrophobic surface on steel by patterning using laser ablation process. Surf. Coat. Technol. 2018, 204, 1180–1185. [Google Scholar] [CrossRef]
- Thorhallsson, A.I.; Fanicchia, F.; Davison, E.; Paul, S.; Davidsdottir, S.; Olafsson, D.I. Erosion and Corrosion Resistance Performance of Laser Metal Deposited High-Entropy Alloy Coatings at Hellisheidi Geothermal Site. Materials 2021, 14, 3071. [Google Scholar] [CrossRef] [PubMed]
- Woodward, I.; Schofield, W.C.E.; Roucoules, V.; Badyal, J.P.S. Super-hydrophobic Surfaces Produced by Plasma Fluorination of Polybutadiene Films. Langmuir 2003, 19, 3432–3438. [Google Scholar] [CrossRef]
- Haj Ibrahim, S.; Wejrzanowski, T.; Przybyszewski, B.; Kozera, R.; García-Casas, X.; Barranco, A. Role of Surface Topography in the Superhydrophobic Effect—Experimental and Numerical Studies. Materials 2022, 15, 3112. [Google Scholar] [CrossRef]
- Zhou, T.; Cheng, X.; Pan, Y.; Li, C.; Gong, L.; Zhang, H. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying. Appl. Surf. Sci. 2018, 437, 321–328. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Chen, M.; Li, Z.; Luo, X.; Lu, W.; Gu, Z. Fabrication and Characterization of Superhydrophobic Al-Based Surface Used for Finned-Tube Heat Exchangers. Materials 2022, 15, 3060. [Google Scholar] [CrossRef]
- Dong, L.; Li, Y.; Lv, J.; Jiang, H.; Zhang, W. Fabrication of Weak C-Axis Preferred AlN Thin Film for Temperature Measurement. Sensors 2021, 21, 5345. [Google Scholar] [CrossRef]
- Tillmann, W.; Kokalj, D.; Stangier, D.; Schoppner, V.; Malatyali, H. Effects of AlN and BCN Thin Film Multilayer Design on the Reaction Time of Ni/Ni-20Cr Thin Film Thermocouples on Thermally Sprayed Al2O3. Sensors 2019, 19, 3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, P.; Wang, W.; Liu, D.; Zhang, J.; Ren, W.; Tian, B.; Zhang, J. Structural and Electrical Properties of Flexible ITO/In2O3 Thermocouples on PI Substrates under Tensile Stretching. ACS Appl. Electron. Mater. 2019, 1, 1105–1111. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, X.; Jiang, S.; Zhang, W.; Jiang, H. Microstructure Evolution and Thermoelectric Property of Pt-PtRh Thin Film Thermocouples. Crystals 2017, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Z. The Research of Temperature Indicating Paints and its Application in Aero-engine Temperature Measurement. Procedia Eng. 2015, 99, 1152–1157. [Google Scholar]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, P.; Lecuna, R.; Manana, M.; Martin, M.J.; Campo, D.D. Infrared Temperature Measurement Sensors of Overhead Power Conductors. Sensors 2020, 20, 7126. [Google Scholar] [CrossRef]
- Piccinini, F.; Martinelli, G.; Carbonaro, A. Reliability of Body Temperature Measurements Obtained with Contactless Infrared Point Thermometers Commonly Used during the COVID-19 Pandemic. Sensors 2021, 21, 3794. [Google Scholar] [CrossRef]
- Viswanathan, E.; Kanjilal, D.; Sivaji, K.; Ganapathy, S. Identification of sublattice damages in swift heavy ion irradiated N-doped 6H-SiC polytype studied by solid state NMR. J. Phys. Chem. B 2011, 115, 7766–7772. [Google Scholar] [CrossRef]
- Jin, E. Grain boundary effects on defect production and mechanical properties of irradiated nanocrystalline SiC. J. Appl. Phys. 2012, 111, 2303. [Google Scholar] [CrossRef]
- Ruan, Y.F.; Wang, P.F.; Huang, L.; Zhu, W. High-Temperature Sensor Based on Neutron-Irradiated 6H-SiC. Key Eng. Mater. 2011, 495, 335–338. [Google Scholar] [CrossRef]
- Kai, C.; Zang, H.; Ben, J.; Jiang, K.; Shi, Z.; Jia, Y.; Cao, X.; Lü, W.; Sun, X.; Li, D. Origination and evolution of point defects in AlN film annealed at high temperature. J. Lumin. 2021, 235, 118032. [Google Scholar] [CrossRef]
- Xiao, S.; Suzuki, R.; Miyake, H.; Harada, S.; Ujihara, T. Improvement mechanism of sputtered AlN films by high-temperature annealing. J. Cryst. Growth 2018, 502, 41–44. [Google Scholar] [CrossRef]
- Hagedorn, S.; Walde, S.; Mogilatenko, A.; Weyers, M.; Cancellara, L.; Albrecht, M.; Jaeger, D. Stabilization of sputtered AlN/sapphire templates during high temperature annealing. J. Cryst. Growth 2019, 512, 142–146. [Google Scholar] [CrossRef]
- Giurlani, W.; Berretti, E.; Innocenti, M.; Lavacchi, A. Measuring the Thickness of Metal Coatings: A Review of the Methods. Coatings 2020, 10, 1211. [Google Scholar] [CrossRef]
- Van Zele, M.; Watté, J.; Hasselmeyer, J.; Rijckaert, H.; Vercammen, Y.; Verstuyft, S.; Deduytsche, D.; Debecker, D.P.; Poleunis, C.; Van Driessche, I.; et al. Thickness Characterization Toolbox for Transparent Protective Coatings on Polymer Substrates. Materials 2018, 11, 1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panas, A.J.; Szczepaniak, R.; Stryczniewicz, W.; Omen, L. Thermophysical Properties of Temperature-Sensitive Paint. Materials 2021, 14, 2035. [Google Scholar] [CrossRef]
- Burner, A.W.; Liu, T.; Garg, S.; Bell, J.; Morgan, D. Unified model deformation and flow transition measurements. J. Aircr. 1999, 35, 898–901. [Google Scholar] [CrossRef]
- Liu, T. Pressure- and Temperature-Sensitive Paints, Encyclopedia of Aerospace Engineering; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Zhou, W.; Peng, D.; Liu, Y.; Hu, H. Assessment of film cooling’s surface quantities using pressure- and temperature-sensitive paint: Comparisons between shaped and sand-dune inspired holes. Exp. Therm. Fluid Sci. 2019, 101, 16–26. [Google Scholar] [CrossRef]
- Watkins, A.N.; Buck, G.M.; Leighty, B.D.; Lipford, W.E.; Oglesby, D.M. Using Pressure- and Temperature-Sensitive Paint for Global Surface Pressure and Temperature Measurements on the Aftbody of a Capsule Vehicle. AIAA J. 2009, 47, 821–829. [Google Scholar] [CrossRef]
- Ghorbani-Tari, Z.; Chen, Y.; Liu, Y. End-wall heat transfer of a rectangular bluff body at different heights: Temperature-sensitive paint measurement and computational fluid dynamics. Appl. Therm. Eng. 2017, 122, 697–705. [Google Scholar] [CrossRef]
- Parker, W.J.; Jenkins, R.J.; Butler, C.P.; Abbott, G.L. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 1961, 32, 1679–1684. [Google Scholar] [CrossRef]
- Vozár, L.; Hohenauer, W. Flash method of measuring the thermal diffusivity, a review. High Temp. High Press. 2004, 36, 253–264. [Google Scholar] [CrossRef]
- Massard, H.; Pinto, C.S.C.; Couto, P.; Orlande, H.R.B.; Cotta, R.M. Analysis of flash method physical models for the measurement of thermal diffusivity of solid materials. In Proceedings of the 10th Brazilian Congress of Thermal Sciences and Engineering—ENCIT 2004, ABCM, Rio de Janeiro, Brazil, 29 November–3 December 2004; p. CIT04-0537. [Google Scholar]
- Terpiłowski, J.; Rudzki, R.; Szczepaniak, R.; Woroniak, W. Investigation of thermal diffusivity of Fe80Ni20 alloy by means of modified pulse method. J. Alloys Compd. 2018, 735, 560–568. [Google Scholar] [CrossRef]
- Terpiłowski, J.; Jóźwiak, S.; Rudzki, R.; Szczepaniak, R.; Woroniak, G. Investigation of Phase Transformation of Fe65Ni35 Alloy by the Modified Pulse Method. Materials 2020, 13, 3425. [Google Scholar] [CrossRef]
- Hemberger, F.; Ebert, H.P.; Fricke, J. Determination of the Local Thermal Diffusivity of Inhomogeneous Samples by a Modified Laser-Flash Method. Int. J. Thermophys. 2007, 28, 1509–1521. Available online: http://thermophysics.ru/pdf_doc/AutoPlay/Docs/CollectionOfManuscripts/ECTP2005paper96.pdf (accessed on 22 April 2022). [CrossRef]
- Panas, A.J.; Stryczniewicz, W.; Szczepaniak, R. Thermophysical property investigation of a thin layered paint. Thermochim. Acta 2018, 622, 100–107. [Google Scholar] [CrossRef]
- Stryczniewicz, W.; Panas, A.J. Numerical data processing from a laser flash experiment on thin graphite layer. Comput. Assist. Methods Eng. Sci. 2015, 22, 279–287. [Google Scholar]
- Grochalski, K.; Wieczorowski, M.; Pawlus, P.; H’Roura, J. Thermal Sources of Errors in Surface Texture Imaging. Materials 2020, 13, 2337. [Google Scholar] [CrossRef]
- Singh, S.; Saha, A.K. Numerical study of flow and heat transfer during a high-speed micro-drop impact on thin liquid films. Int. J. Heat Fluid Flow 2021, 89, 108808. [Google Scholar] [CrossRef]
- Su, Y. Modeling and Characteristic Study of Thin Film Based Biosensor Based on COMSOL. Hindawi Publ. Corp. Math. Probl. Eng. 2014, 11, 581063. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, J.; Liao, J.; Guo, Y.; Zhao, Z.; Liang, H. Multi-field simulation and optimization of SiNx:H thin-film deposition by large-size tubular LF-PECVD. Sol. Energy 2021, 228, 575–585. [Google Scholar] [CrossRef]
- Yadav, H.N.S.N.; Kumar, M.; Kumar, A.; Das, M. COMSOL simulation of microwave plasma polishing on different surfaces. Mater. Today Proc. 2021, 45, 4803–4809. [Google Scholar] [CrossRef]
- Zandi, S.; Saxena, P.; Razaghi, M.; Gorji, N.E. Simulation of CZTSSe Thin-Film Solar Cells in COMSOL: Three-Dimensional Optical, Electrical, and Thermal Models. IEEE J. Photovolt. 2020, 10, 1503–1507. [Google Scholar] [CrossRef]
- Qin, Z.; Zeng, Y.; Norton, P.R.; Shoesmith, D.W. Modeling Hydrogen Permeation through a Thin TiO2 Film Deposited on Pd Using COMSOL Multiphysics. In Proceedings of the COMSOL Conference, Boston, MA, USA, 8–10 October 2009. [Google Scholar]
- Nan, C. Numerical Modeling of Flexible ZnO Thin-Film Transistors Using COMSOL Multiphysics. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2013. [Google Scholar]
- Tesar, J.; Semmar, N. Thermal effusivity of metallic thin films: Comparison between 1D multilayer analytical model and 2D numerical model using COMSOL. In Proceedings of the 5th European Thermal-Sciences Conference, Eindhoven, The Netherlands, 18–22 May 2008. [Google Scholar]
- Saxena, P.; Gorji, N.E. COMSOL Simulation of Heat Distribution in Perovskite Solar Cells: Coupled Optical–Electrical–Thermal 3-D Analysis. IEEE J. Photovolt. 2019, 9, 1693–1698. [Google Scholar] [CrossRef]
- Yantchev, V.; Turner, P.; Plessky, V. COMSOL modeling of SAW Resonators. In Proceedings of the IEEE International Ultrasonics Symposium Proceedings, Tours, France, 18–21 September 2016. [Google Scholar]
- Du, S.-Y.; Zhao, Y.-H. Numerical study of conjugated heat transfer in evaporating thin-films near the contact line. Int. J. Heat Mass Transf. 2012, 55, 61–68. [Google Scholar] [CrossRef]
- Al-Shurman, K.M.; Naseem, H. CVD Graphene Growth Mechanism on Nickel Thin Films. In Proceedings of the 2014 COMSOL Conference in Boston, Boston, MA, USA, 8–10 October 2014. [Google Scholar]
- Budakli, M.; Gambaryan-Roisman, T.; Stephan, P. Gas-driven thin liquid films: Effect of interfacial shear on the film waviness and convective heat transfer. Int. J. Therm. Sci. 2019, 146, 106077. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, S.; Du, X.; Yang, Y. Heat transfer characteristics of a binary thin liquid film in a microchannel with constant heat flux boundary condition. Int. J. Therm. Sci. 2018, 134, 612–621. [Google Scholar] [CrossRef]
- Min, S.; Blumm, J.; Lindemann, A. A new laser flash system for measurement of the thermophysical properties. Thermochim. Acta 2007, 45, 46–49. [Google Scholar] [CrossRef]
- Orłoś, Z. Naprężenia cieplne; PWN: Warszawa, Poland, 1991. [Google Scholar]
- Yin, S.; Guo, W.; Huang, D.; Zhang, H.; Wu, H.; Zhang, C. Simulation Study on Heat Transfer Characteristics and Cooling Water Design for the Casting Film. Huanan Ligong Daxue Xuebao/J. South China Univ. Technol. Nat. Sci. 2021, 49, 23–34. [Google Scholar] [CrossRef]
- Ebrahiminejad, Z.; Asgary, S.; Esmaili, P. Surface characterization of Cu-doped indium sulfide thin films. Indian J. Phys. 2022, 96, 1315–1319. [Google Scholar] [CrossRef]
No | Type of Inclusion | Number of Hemispheres | Radius of Hemisphere [mm] | Hemisphere Share in Total Mass [%] |
---|---|---|---|---|
1 | spherical | 0 | 0 | 0 |
2 | spherical | 1 | 0.3655 | 10 |
3 | spherical | 2 | 0.2901 | 10 |
4 | spherical | 3 | 0.2535 | 10 |
5 | spherical | 4 | 0.2300 | 10 |
6 | spherical | 5 | 0.2137 | 10 |
7 | spherical | 1 | 0.4605 | 20 |
8 | spherical part | 1 | 0.48 | 10 |
9 | cube | 1 | 0.4642—cube edge | 10 |
Number of Hemispheres | Place of Measurement | t0.5 [ms] | Error [%] |
---|---|---|---|
0 | Whole back surface | 13.2 | 0 |
1 | Whole back surface | 13.7 | 3.8 |
2 | Whole back surface | 13.6 | 3.0 |
3 | Whole back surface | 13.4 | 1.5 |
4 | Whole back surface | 13.3 | 0.8 |
5 | Whole back surface | 13.26 | 0.5 |
1 | From the surface of the hemisphere 10% | 14.9 | 12.9 |
1 | From the surface of the hemisphere 20% | 14.5 | 9.8 |
1 | From the surface around a parallel sphere 10% | 12.1 | 8.3 |
1 | From the surface around a parallel sphere 20% | 11.0 | 16.7 |
1 | Whole rear surface 20% | 13.7 | 3.8 |
1 | Whole back surface (inclusion cube) | 12.8 | 3.0 |
1 | Whole back surface (part of sphere—10%) | 13.5 | 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepaniak, R. Effect of Surface Topology on the Apparent Thermal Diffusivity of Thin Samples at LFA Measurements. Materials 2022, 15, 4755. https://doi.org/10.3390/ma15144755
Szczepaniak R. Effect of Surface Topology on the Apparent Thermal Diffusivity of Thin Samples at LFA Measurements. Materials. 2022; 15(14):4755. https://doi.org/10.3390/ma15144755
Chicago/Turabian StyleSzczepaniak, Robert. 2022. "Effect of Surface Topology on the Apparent Thermal Diffusivity of Thin Samples at LFA Measurements" Materials 15, no. 14: 4755. https://doi.org/10.3390/ma15144755
APA StyleSzczepaniak, R. (2022). Effect of Surface Topology on the Apparent Thermal Diffusivity of Thin Samples at LFA Measurements. Materials, 15(14), 4755. https://doi.org/10.3390/ma15144755