Morphology and Anti-Corrosive Performance of Cr(III) Passivated Zn–Fe Alloy Coating on NdFeB Substrate
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Pretreatment of the Magnet
2.3. Electrodeposition Process
2.4. Testing
3. Results and Discussion
3.1. SEM Analysis
3.2. D White-Light Interfering Surface Analysis
3.3. XRD Analysis
3.4. EPMA Analysis
3.5. Cyclic Voltammogram Analysis
3.6. Potentiodynamic Polarization Analysis
3.7. EIS Analysis
4. Conclusions
- (1)
- Both pure Zn and Zn–Fe alloy systems could provide efficient protection for the NdFeB substrate; nevertheless, the Zn–Fe alloy system displayed more excellent corrosion resistance. The Cr(III) passivated Zn–Fe alloy coating (PZFC) exhibited the highest corrosion potential, lowest corrosion current density and highest electrochemical impedance, which was attributed to the low-iron content (about 0.9 wt.%) in the coating.
- (2)
- The Fe element in Zn–Fe alloy coating was predominantly in solid solution in η-phase and had small amounts in elemental form.
- (3)
- The Cdll of PZFC was one fifth that of PZC, and the total resistance (R1 + Rct) of PZFC was about 1.7 times that of PZC, which could provide a physical barrier function for the sintered NdFeB substrate.
- (4)
- The PZFC withstood 210 h against neutral 3.5 wt.% NaCl salt spray without any white rust, which was 3–4 times longer than that of the PZC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Gao, Z.; Xu, G.Q.; Liu, J.Q.; Xuan, H.C.; Liu, Y.H.; Yi, X.F.; Chen, J.W.; Han, P.D. Current status and challenges in corrosion and protection strategies for sintered NdFeB magnets. Acta Metall Sin. 2020, 57, 171–181. [Google Scholar] [CrossRef]
- Matsuura, Y. Recent development of Nd–Fe–B sintered magnets and their applications. J. Magn. Magn. Mater. 2006, 303, 344–347. [Google Scholar] [CrossRef]
- Schultz, L.; El-Aziz, A.M.; Barkleit, G.; Mummert, K. Corrosion behaviour of Nd–Fe–B permanent magnetic alloys. J. Alloys Compd. 1999, 267, 307–313. [Google Scholar] [CrossRef]
- Wang, Z.X.; Pei, K.; Zhang, J.J.; Chen, R.J.; Xia, W.X.; Wang, J.Z.; Li, M.; Yan, A. Correlation between the microstructure and magnetic configuration in coarse-grain inhibited hot-deformed NdFeB magnets. Acta Mater. 2019, 167, 103–111. [Google Scholar] [CrossRef]
- Song, Y.W.; Zhang, H.; Yang, H.X.; Song, Z.L. A comparative study on the corrosion behavior of NdFeB magnets in different electrolyte solutions. Mater. Corros. 2008, 59, 794–801. [Google Scholar] [CrossRef]
- Fu, X.; Han, H.L.; Du, Z.W.; Feng, H.B.; Li, Y.F. Microstructural investigation of Nd-rich phase in sintered Nd-Fe-B magnets through electron microscopy. J. Rare Earth. 2013, 31, 765–771. [Google Scholar] [CrossRef]
- Bala, H.; Pawłowska, G.; Szymura, S.; Sergeev, V.V.; Rabinovich, Y.M. Corrosion characteristics of Nd-Fe-B sintered magnets containing various alloying elements. J. Magn. Magn. Mater. 1990, 87, 255–259. [Google Scholar] [CrossRef]
- Tenaud, P.; Lemaire, H.; Vial, F. Recent improvements in NdFeB sintered magnets. J. Magn. Magn. Mater. 1991, 101, 328–332. [Google Scholar] [CrossRef]
- Kaneko, Y.; Kuniyoshi, F.; Ishigaki, N. Proven technologies on high-performance Nd–Fe-B sintered magnets. J. Alloys Compd. 2006, 408–412, 1344–1349. [Google Scholar] [CrossRef]
- Chen, J.; Yang, H.Y.; Xu, G.Q.; Zhang, P.J.; Lv, J.; Sun, W.; Li, B.S.; Huang, J.; Wang, D.M.; Shu, X.; et al. Rare earth passivation and corrosion resistance of zinc coated NdFeB magnets. J. Rare Earths 2020, 40, 302–309. [Google Scholar] [CrossRef]
- Zhang, P.J.; Xu, G.Q.; Liu, J.Q.; Yi, X.F.; Wu, Y.C. Effect of pretreating technologies on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens. Appl. Surf. Sci. 2016, 363, 499–506. [Google Scholar] [CrossRef]
- Isotahdon, E.; Huttunen-Saarivirta, E.; Kuokkala, V.T.; Paju, M.; Frisk, L. Corrosion protection provided by electrolytic nickel and tin coatings for Nd–Fe–B magnets. J. Alloys. Compd. 2014, 585, 203–213. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Q.; Yang, Z.Y.; Xu, G.Q.; Zhang, P.J.; Lv, J.; Sun, W.; Li, B.S.; Wang, D.M.; Wu, Y.C. Densification and anticorrosion performances of vacuum evaporated aluminum coatings on NdFeB magnets. J. Rare Earths 2021, 39, 1238–1245. [Google Scholar] [CrossRef]
- Cao, Y.J.; Zhang, P.J.; Sun, W.; Zhang, W.F.; Wei, H.Z.; Wang, J.Q.; Li, B.S.; Yi, X.F.; Xu, G.Q.; Wu, Y.C. Effects of bias voltage on coating structures and anticorrosion performances of PA-PVD Al coated NdFeB magnets. J. Rare Earths 2021, 39, 703–711. [Google Scholar] [CrossRef]
- Xu, J.L.; Xiao, Q.F.; Mei, D.D.; Zhong, Z.C.; Tong, Y.X.; Zheng, Y.F.; Li, L. Preparation and characterization of amorphous SiO2 coatings deposited by micro-arc oxidation on sintered NdFeB permanent magnets. J. Magn. Magn. Mater. 2017, 426, 361–368. [Google Scholar] [CrossRef]
- Hu, J.M.; Liu, X.L.; Zhang, J.Q.; Cao, C.N. Corrosion protection of Nd-Fe-B magnets by silanization. Prog. Org. Coat. 2006, 55, 388–392. [Google Scholar] [CrossRef]
- Ma, C.B.; Cao, F.H.; Zhang, Z.; Zhang, Z.Q. Electrodeposition of amorphous Ni-P coatings onto Nd–Fe–B permanent magnet substrates. Appl. Surf. Sci. 2006, 253, 2251–2256. [Google Scholar] [CrossRef]
- Wang, F.; Chen, X.P.; Qiu, P.; Wang, X.D.; Lu, W. Corrosion Resistance of Electroplating of Cu-Ni/P Coatings on NdFeB Magnet Materials. Int. J. Electrochem. Sci. 2020, 15, 10476–10487. [Google Scholar] [CrossRef]
- Yu, S.X.; Chen, L. Preparation Technology and Performances of Zn-Cr Coating on Sintered NdFeB Permanent Magnet. J. Rare Earths 2006, 24, 223–226. [Google Scholar] [CrossRef]
- Chen, J.; Xu, B.J.; Ling, G.P. Amorphous Al-Mn coating on NdFeB magnets: Electrodeposition from AlCl3-EMIC-MnCl2 ionic liquid and its corrosion behavior. Mater. Chem. Phys. 2012, 134, 1067–1071. [Google Scholar] [CrossRef]
- Li, J.J.; Huang, X.Y.; Zeng, L.L.; Ouyang, B.; Yu, X.Q.; Yang, M.N.; Yang, B.; Rawat, R.S.; Zhong, Z.C. Tuning magnetic properties, thermal stability and microstructure of NdFeB magnets with diffusing Pr-Zn films. J. Mater. Sci. Technol. 2020, 41, 81–87. [Google Scholar] [CrossRef]
- Yang, X.K.; Li, Q.; Zhang, S.Y.; Liu, F.; Wang, S.Y.; Zhang, H.X. Microstructure characteristic and excellent corrosion protection properties of sealed Zn-TiO2 composite coating for sintered NdFeB magnet. J. Alloys. Compd. 2010, 495, 189–195. [Google Scholar] [CrossRef]
- Yang, X.K.; Li, Q.; Hu, J.Y.; Zhang, X.K.; Zhang, S.Y. The electrochemical corrosion behavior of sealed Ni-TiO2 composite coating for sintered NdFeB magnet. J. Appl. Electrochem. 2010, 40, 39–47. [Google Scholar] [CrossRef]
- Xu, J.L.; Xiao, Q.F.; Mei, D.D.; Tong, Y.X.; Zheng, Y.F.; Li, L.; Zhong, Z.C. Microstructure, corrosion resistance and formation mechanism of alumina micro-arc oxidation coatings on sintered NdFeB permanent magnets. Surf. Coat. Technol. 2017, 100, 621–627. [Google Scholar] [CrossRef]
- Mao, S.D.; Yang, H.X.; Huang, F.; Xie, T.T.; Song, Z.L. Corrosion behaviour of sintered NdFeB coated with Al/Al2O3 multilayers by magnetron sputtering. Appl. Surf. Sci. 2011, 257, 3980–3984. [Google Scholar] [CrossRef]
- Xu, J.L.; Zong, Z.C.; Huang, Z.X.; Lou, J.M. Corrosion resistance of the titania particles enhanced acrylic resin composite coatings on sintered NdFeB permanent magnets. J. Alloys. Compd. 2013, 570, 28–33. [Google Scholar] [CrossRef]
- Zhong, Z.C.; Xu, J.L.; Huang, Z.X. Preparation and characterization of TiO2/acrylic resin composite coatings on sintered NdFeB permanent magnets by electrochemical deposition. Rare Met. 2014, 33, 703–708. [Google Scholar] [CrossRef]
- Rashmi, D.; Pavithra, G.P.; Praveen, B.M.; Devapal, D.; Nayana, K.O.; Hebbar, S.P. Characterization and Corrosion Analysis of Electrodeposited Nanostructured Zn-Fe Alloy Coatings. J. Bio-Tribo-Corros. 2020, 6, 84. [Google Scholar] [CrossRef]
- Liu, L.; Yu, S.R.; Cao, W.A. Zn-Fe and Y-modified Zn–Fe coatings on 42CrMo steel via pack cementation. Rare Met. 2021, 40, 2266–2274. [Google Scholar] [CrossRef]
- Ramanauskas, R. Structural factor in Zn alloy electrodeposit corrosion. Appl. Surf. Sci. 1999, 153, 53–64. [Google Scholar] [CrossRef]
- Akiyama, T.; Fukushima, H. Recent study on the mechanism of the electrodeposition of iron-group metal alloys. ISIJ Int. 1992, 32, 787–798. [Google Scholar] [CrossRef]
- Pushpavanam, M. Critical review on alloy plating: A viable alternative to conventional plating. Bull. Electrochem. 2000, 16, 559–566. [Google Scholar]
- Yang, C.Q.; Zhou, Y.C.; Long, Z.L. Zn-Fe Electrodeposition and physico-chemical properties of Zn-Fe alloy coatings from sulfate solution. J. Mater. Sci. Lett. 2002, 21, 1677–1680. [Google Scholar] [CrossRef]
- Bajat, J.B.; Miskovic-Stankovic, V.B.; Kacarevic-Popovic, V. The influence of steel surface modification by electrodeposited Zn–Fe alloys on the protective behaviour of an epoxy coating. Prog. Org. Coat. 2003, 47, 49–54. [Google Scholar] [CrossRef]
- Yang, Z.N.; Zhang, Z.; Zhang, J.Q. Electrodeposition of decorative and protective Zn-Fe coating onto low-carbon steel substrate. Surf. Coat. Technol. 2006, 200, 4810–4815. [Google Scholar] [CrossRef]
- Shen, P.H.; Tu, Z.M. Electroplating Zinc and Zine Alloy, 1st ed.; Mechanical Industry Press: Beijing, China, 2001. [Google Scholar]
- Long, Z.L.; Zhou, Y.C.; Xiao, L. Characterization of black chromate conversion coating on the electrodeposited zinc–iron alloy. Appl. Surf. Sci. 2003, 218, 124–137. [Google Scholar] [CrossRef]
- UNE-EN ISO 19598-2017; Metallic Coatings-Electroplated Coatings of Zinc and Zinc Alloys on Iron or Steel with Supplementary Cr(VI)-Free Treatment. 1st ed. ISO: Geneva, Switzerland, 2016.
- Zhang, X.; Bos, C.V.D.; Sloof, W.G.; Hovestad, A.; Terryn, H.; Wit, J.H.W.D. Comparison of the morphology and corrosion performance of Cr(VI)-and Cr(III)-based conversion coatings on zinc. Surf. Coat. Technol. 2005, 199, 92–104. [Google Scholar] [CrossRef]
- Rosalbino, F.; Scavino, G.; Mortarino, G.; Angelini, E.; Lunazzi, G. EIS study on the corrosion performance of a Cr(III)-based conversion coating on zinc galvanized steel for the automotive industry. J. Solid State Electrochem. 2011, 15, 703–709. [Google Scholar] [CrossRef]
- Cho, K.W.; Shankar, R.V.; Kwon, H.K. Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc. Electrochim. Acta 2007, 52, 4449–4456. [Google Scholar] [CrossRef]
- Chang, Y.T.; Wen, N.T.; Chen, W.K.; Ger, M.D.; Pan, G.T.; Yang, T.C.K. The effects of immersion time on morphology and electrochemical properties of the Cr (III)-based conversion coatings on zinc coated steel surface. Corros. Sci. 2008, 50, 3494–3499. [Google Scholar] [CrossRef]
- Tomachuk, C.R.; Elsner, C.L.; Sarli, A.R.D.; Ferraz, O.B. Corrosion resistance of Cr(III) conversion treatments applied on electrogalvanised steel and subjected to chloride containing media. Mater. Chem. Phys. 2010, 119, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.F.; Chen, X.P.; Wang, X.D. Preparation of Trivalent Chromium Passivation Solution at Room Temperature for Galvanized NdFeB Magnet. CN Patent 101,173,354, 14 April 2010. [Google Scholar]
- Watanabe, T. Nano-Plating: Microstructure Control Theory of Plated Film and Data Base of Plated Film Microstructure, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Lee, K.K.; Lee, I.H.; Lee, C.R.; Ahn, H.K. In-situ observation in a scanning electron microscope on the exfoliation behavior of galvannealed Zn-Fe coating layers. Surf. Coat. Technol. 2007, 201, 6261–6266. [Google Scholar] [CrossRef]
- Jaya, S.; Prasada, R.T.; Prabhakara, R.G. Electrochemical phase formation-1. The electrodeposition of copper on glassy carbon. Electrochim. Acta 1986, 31, 343–348. [Google Scholar] [CrossRef]
- Zhang, Z.; Leng, W.H.; Shao, H.B.; Zhang, Z.Q.; Wang, Z.M.; Cao, C.N. Study on the behavior of Zn-Fe alloy electroplating. J. Electroanal Chem. 2001, 516, 127–130. [Google Scholar] [CrossRef]
- Cao, C.N.; Zhang, J.Q. An Introduction to Electrochemical Impedance Spectroscopy, 1st ed.; Science Press: Beijing, China, 2002. [Google Scholar]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Fedrizzi, L.; Ciaghi, L.; Bonora, P.L. Corrosion behaviour of electrogalvanized steel in sodium chloride and ammonium sulphate solutions: A study by EIS. J. Appl. Electrochem. 1992, 22, 247–254. [Google Scholar] [CrossRef]
Component | Pure Zn | Zn–Fe |
---|---|---|
FeSO4·7H2O (g/L) | / | 10 |
ZnCl2 (g/L) | 60 | 60 |
KCl (g/L) | 210 | 210 |
H3BO3 (g/L) | 28 | 28 |
C6H11NaO7 (g/L) | / | 8 |
C4O6H4KNa (g/L) | / | 10 |
Ascorbic acid (g/L) | / | 1 |
Additive (mL/L) | 20 | 20 |
pH | 4.5–5.5 | 4.5–5.5 |
Current density (A/dm2) | 1.5 | 1.5 |
Temperature (°C) | 30 | 30 |
Time (min) | 45 | 45 |
Component | g/L |
---|---|
KCl | 210 |
H3BO3 | 28 |
C6H11NaO7 | 8 |
C4O6H4KNa | 10 |
Ascorbic acid | 1 |
Additive | 20 mL/L |
Specimens | Corrosion Potential (mV vs. SCE) | Corrosion Current Density (A cm−2) |
---|---|---|
PZFC | −936 | 0.7 × 10−6 |
PZC | −998 | 3.3 × 10−6 |
ZFC | −1032 | 4.1 × 10−6 |
ZC | −1074 | 1.9 × 10−5 |
NdFeB Substrate | −695 | 6.6 × 10−5 |
Specimens | R1 (Ω cm2) | Yo1 (Ω−1 cm−2 s−n) | n | Rct (Ω cm2) | Yodl (Ω−1 cm−2 s−n) | n | Cdl (F cm−2) |
---|---|---|---|---|---|---|---|
PZFC | 8795 | 2.7 × 10−6 | 0.8 | 3.2 × 104 | 2.1 × 10−6 | 0.8 | 1.1 × 10−6 |
PZC | 5882 | 6.4 × 10−6 | 0.8 | 1.8 × 104 | 8.4 × 10−6 | 0.8 | 5.2 × 10−6 |
ZFC | 1.5 × 104 | 1.3 × 10−5 | 0.8 | 8.7 × 10−6 | |||
ZC | 3595 | 2.1 × 10−5 | 0.8 | 1.1 × 10−5 | |||
NdFeB Substrate | 1775 | 3.5 × 10−4 | 0.7 | 2.9 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Zhou, X.; Chen, X.; Fu, S.; Wang, X.; Zhao, D. Morphology and Anti-Corrosive Performance of Cr(III) Passivated Zn–Fe Alloy Coating on NdFeB Substrate. Materials 2022, 15, 7523. https://doi.org/10.3390/ma15217523
Li B, Zhou X, Chen X, Fu S, Wang X, Zhao D. Morphology and Anti-Corrosive Performance of Cr(III) Passivated Zn–Fe Alloy Coating on NdFeB Substrate. Materials. 2022; 15(21):7523. https://doi.org/10.3390/ma15217523
Chicago/Turabian StyleLi, Ba, Xiaoshun Zhou, Xiaoping Chen, Song Fu, Xiangdong Wang, and Dongliang Zhao. 2022. "Morphology and Anti-Corrosive Performance of Cr(III) Passivated Zn–Fe Alloy Coating on NdFeB Substrate" Materials 15, no. 21: 7523. https://doi.org/10.3390/ma15217523
APA StyleLi, B., Zhou, X., Chen, X., Fu, S., Wang, X., & Zhao, D. (2022). Morphology and Anti-Corrosive Performance of Cr(III) Passivated Zn–Fe Alloy Coating on NdFeB Substrate. Materials, 15(21), 7523. https://doi.org/10.3390/ma15217523