Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress–Strain Conditions
Abstract
:1. Introduction
- −
- −
- −
- The GP-based model for a limited dimension of the input data vector (it is considered that the maximum five-dimensional vector of input data would be necessary for life prediction, Section 2.4) is computationally very effective [20].
- −
2. Brief Review of Fatigue Life Prediction Models
2.1. Empirical Models
2.2. Stress Invariants Models
2.3. Critical Plane Models
2.4. Summary and Model Selection
- Brown–Miller model:
- Fatemi–Socie model:
- Glinka et al. model:
- Yu et al. model:
3. Experiment
4. Results and Discussion
4.1. Error Indexes
4.2. The Parametric Fatigue Life Prediction Models
4.3. The Gaussian Process-Based Fatigue Model
4.3.1. Physics-Based Input Parameters (Predictors)
4.3.2. Training Process
4.3.3. Test Process
5. Summary and Conclusions
- The relevance analysis of the applied input quantities for the fatigue GP-based model revealed that the maximum shear strain and normal stress on the plane of maximum shear are the most decisive factors for the life prediction of CuZn37 brass.
- The GP model trained on uniaxial and pure torsion loading paths was ineffective for the prediction of the fatigue life of CuZn37 brass under non-proportional loading paths.
- Two Matern-class kernels (M3/2, M5/2), the SE kernel, and the RQ kernel were successfully applied to the GP-based model with better prediction performance than the parametric commonly applied multiaxial criteria of Fatemi–Socie, Brown–Miller, Glinka et al., and Yu et al.
- The computational time was decreased approximately 7.8 times by applying the GP-based model compared to the parametric fatigue models.
- The effect of mean loading can be simply implemented in the proposed fatigue GP-based model by adding the mean components of stress/strain to the input quantities (predictors).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Gaussian Process for Regression
Appendix B
Covariance Functions
- Exponential (EX)
- Matern 3/2 (M3/2)
- Matern 5/2 (M5/2)
- Rational quadratic (RQ)
- Squared exponential (SE)
References
- Stephens, R.I.; Fatemi, A.; Stephens, R.R.; Fuchs, H.O. Metal Fatigue in Engineering; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Wu, Y.L.; Zhu, S.P.; He, J.C.; Liao, D.; Wang, Q. Assessment of notch fatigue and size effect using stress field intensity approach. Int. J. Fatigue 2021, 149, 106279. [Google Scholar] [CrossRef]
- Shamsaei, N.; Fatemi, A. Small fatigue crack growth under multiaxial stresses. Int. J. Fatigue 2014, 58, 126–135. [Google Scholar] [CrossRef]
- Zhu, S.P.; Foletti, S.; Beretta, S. Probabilistic framework for multiaxial LCF assessment under material variability. Int. J. Fatigue 2017, 103, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Ai, Y.; Zhu, S.P.; Liao, D.; Correia, J.A.F.O.; Souto, C.; De Jesus, A.M.P.; Keshtegar, B. Probabilistic modeling of fatigue life distribution and size effect of components with random defects. Int. J. Fatigue 2019, 126, 165–173. [Google Scholar] [CrossRef]
- Liao, D.; Zhu, S.P.; Keshtegar, B.; Qian, G.; Wang, Q. Probabilistic framework for fatigue life assessment of notched components under size effects. Int. J. Mech. Sci. 2020, 181, 105685. [Google Scholar] [CrossRef]
- Karolczuk, A.; Macha, E. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int. J. Fract. 2005, 134, 267–304. [Google Scholar] [CrossRef]
- Dantas, R.; Correia, J.; Lesiuk, G.; Rozumek, D.; Zhu, S.P.; de Jesus, A.; Susmel, L.; Berto, F. Evaluation of multiaxial high-cycle fatigue criteria under proportional loading for S355 steel. Eng. Fail. Anal. 2020, 120, 105037. [Google Scholar] [CrossRef]
- Kenmeugne, B.; Soh Fotsing, B.D.; Anago, G.F.; Fogue, M.; Robert, J.L.; Kenne, J.P. On the evolution and comparison of multiaxial fatigue criteria. Int. J. Eng. Technol. 2012, 4, 37–46. [Google Scholar]
- Arora, P.; Gupta, S.K.; Samal, M.K.; Chattopadhyay, J. Development of new critical plane model for assessment of fatigue life under multi-axial loading conditions. Int. J. Fatigue 2019, 129, 105209. [Google Scholar] [CrossRef]
- Kalayci, C.B.; Karagoz, S.; Karakas, Ö. Soft computing methods for fatigue life estimation: A review of the current state and future trends. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2763–2785. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y. Fatigue modeling using neural networks: A comprehensive review. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 945–979. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, J.; Jing, H.; Fei, C.; Tang, W. Reliability-based low fatigue life analysis of turbine blisk with generalized regression extreme neural network method. Materials 2019, 12, 1545. [Google Scholar] [CrossRef] [Green Version]
- An, D.; Kim, N.H.; Choi, J.H. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliab. Eng. Syst. Saf. 2015, 133, 223–236. [Google Scholar] [CrossRef]
- Kan, M.S.; Tan, A.C.C.; Mathew, J. A review on prognostic techniques for non-stationary and non-linear rotating systems. Mech. Syst. Signal Process. 2015, 62, 1–20. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Z. An enhanced Kriging surrogate modeling technique for high-dimensional problems. Mech. Syst. Signal Process. 2020, 140, 106687. [Google Scholar] [CrossRef]
- ASTM E739-10; Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life Fatigue Data. ASTM Int.: West Conshohocken, PA, USA, 2015.
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; The MIT Press: Cambridge, MA, USA, 2012; ISBN 9780262018029. [Google Scholar]
- Wan, H.P.; Ren, W.X.; Todd, M.D. An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions. Int. J. Numer. Methods Eng. 2017, 109, 739–760. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Process for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006; ISBN 026218253X. [Google Scholar]
- Huchet, Q.; Mattrand, C.; Beaurepaire, P.; Relun, N.; Gayton, N. AK-DA: An efficient method for the fatigue assessment of wind turbine structures. Wind Energy 2019, 22, 638–652. [Google Scholar] [CrossRef]
- Aye, S.A.; Heyns, P.S. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission. Mech. Syst. Signal Process. 2017, 84, 485–498. [Google Scholar] [CrossRef]
- Hao, H.; Ye, D.; Chen, C. Strain ratio effects on low-cycle fatigue behavior and deformation microstructure of 2124-T851 aluminum alloy. Mater. Sci. Eng. A 2014, 605, 151–159. [Google Scholar] [CrossRef]
- Mohanty, S.; Chattopadhyay, A.; Peralta, P.; Das, S.; Willhauck, C. Fatigue life prediction using multivariate gaussian process. In Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL, USA, 7–10 April 2008; pp. 1–14. [Google Scholar]
- Mohanty, S.; Chattopadhyay, A.; Peralta, P.; Das, S. Bayesian Statistic Based Multivariate Gaussian Process Approach for Offline/Online Fatigue Crack Growth Prediction. Exp. Mech. 2011, 51, 833–843. [Google Scholar] [CrossRef]
- Hirvoas, A.; Prieur, C.; Arnaud, E.; Caleyron, F.; Munoz Zuniga, M. Quantification and reduction of uncertainties in a wind turbine numerical model based on a global sensitivity analysis and a recursive Bayesian inference approach. Int. J. Numer. Methods Eng. 2021, 122, 2528–2544. [Google Scholar] [CrossRef]
- Słoński, M. Bayesian neural networks and Gaussian processes in identification of concrete properties. Comput. Assist. Mech. Eng. Sci. 2011, 18, 291–302. [Google Scholar]
- Hu, D.; Su, X.; Liu, X.; Mao, J.; Shan, X.; Wang, R. Bayesian-based probabilistic fatigue crack growth evaluation combined with machine-learning-assisted GPR. Eng. Fract. Mech. 2020, 229, 106933. [Google Scholar] [CrossRef]
- Ling, Y.; Mahadevan, S. Integration of structural health monitoring and fatigue damage prognosis. Mech. Syst. Signal Process. 2012, 28, 89–104. [Google Scholar] [CrossRef]
- Farid, M. Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression. Int. J. Fatigue 2021, 155, 106415. [Google Scholar] [CrossRef]
- Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine Learning Algorithms in Civil Structural Health Monitoring: A Systematic Review. Arch. Comput. Methods Eng. 2020, 28, 2621–2643. [Google Scholar] [CrossRef]
- Karolczuk, A.; Słoński, M. Application of the Gaussian process for fatigue life prediction under multiaxial loading. Mech. Syst. Signal Process. 2022, 167, 108599. [Google Scholar] [CrossRef]
- Karolczuk, A.; Papuga, J.; Palin-luc, T. Progress in fatigue life calculation by implementing life-dependent material parameters in multiaxial fatigue criteria. Int. J. Fatigue 2020, 134, 105509. [Google Scholar] [CrossRef]
- Pejkowski, Ł.; Seyda, J. Fatigue of four metallic materials under asynchronous loadings: Small cracks observation and fatigue life prediction. Int. J. Fatigue 2021, 142, 105904. [Google Scholar] [CrossRef]
- Niu, X.P.; Wang, R.Z.; Liao, D.; Zhu, S.P.; Zhang, X.C.; Keshtegar, B. Probabilistic modeling of uncertainties in fatigue reliability analysis of turbine bladed disks. Int. J. Fatigue 2021, 142, 105912. [Google Scholar] [CrossRef]
- Karolczuk, A.; Kluger, K.; Palin-luc, T. Fatigue failure probability estimation of the 7075-T651 aluminum alloy under multiaxial loading based on the life-dependent material parameters concept. Int. J. Fatigue 2021, 147, 106174. [Google Scholar] [CrossRef]
- Karolczuk, A.; Kurek, M. Fatigue life uncertainty prediction using the Monte Carlo and Latin hypercube sampling techniques under uniaxial and multiaxial cyclic loading. Int. J. Fatigue 2022, 160, 106867. [Google Scholar] [CrossRef]
- Macha, E.; Sonsino, C.M. Energy criteria of multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 1999, 22, 1053–1070. [Google Scholar] [CrossRef]
- Skibicki, D. Phenomena and Computational Models of Non-Proportional Fatigue of Materials; Springer: Berlin/Heidelberg, Germany, 2014; Volume 18, ISBN 9783319015644. [Google Scholar]
- Gough, H.J. Engineering steels under combined cyclic and static stresses. J. Appl. Mech. ASME 1950, 17, 113–125. [Google Scholar] [CrossRef]
- Gough, H.J.; Clenshaw, W.J.; Pollard, H.V. Some Experiments on the Resistance of Metals to Fatigue under Combined Stresses; His Majesty’s Stationery Office: London, UK, 1951. [Google Scholar]
- Pejkowski, Ł.; Skibicki, D.; Kurek, M. Generalization of Gough and Pollard Criterion for the Finite Fatigue Life Regime in Proportional Loading Conditions. J. Test. Eval. 2019, 47, 1023–1046. [Google Scholar] [CrossRef]
- Sines, G. Failure of Materials under Combined Repeated Stresses with Superimposed Static Stresses; University of California: Los Angeles, CA, USA, 1955. [Google Scholar]
- Crossland, B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In Proceedings of the International Conference on Fatigue of Metals, London, UK, 10–14 September 1956; Institute of Mechanical Engineers: London, UK, 1956; pp. 138–149. [Google Scholar]
- Papuga, J. A survey on evaluating the fatigue limit under multiaxial loading. Int. J. Fatigue 2011, 33, 153–165. [Google Scholar] [CrossRef]
- Polák, J.; Man, J. Experimental evidence and physical models of fatigue crack initiation. Int. J. Fatigue 2016, 91, 294–303. [Google Scholar] [CrossRef]
- Mughrabi, H. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140132. [Google Scholar] [CrossRef] [Green Version]
- Findley, W.N. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. Dep. Army Proj. 1958, 81, 301–305. [Google Scholar] [CrossRef]
- Brown, M.W.; Miller, K.J. A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions. Proc. Inst. Mech. Eng. 1973, 187, 745–755. [Google Scholar] [CrossRef]
- Kandil, F.A.; Brown, M.W.; Miller, K.J. Biaxial Low-Cycle Fatigue Failure of 316 Stainless Steel at Elevated Temperatures; Metals Society: London, UK, 1982; pp. 203–210. [Google Scholar]
- Fatemi, A.; Socie, D.F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 1988, 11, 149–165. [Google Scholar] [CrossRef]
- Carpinteri, A.; Spagnoli, A.; Vantadori, S. Multiaxial fatigue assessment using a simplified critical plane-based criterion. Int. J. Fatigue 2011, 33, 969–976. [Google Scholar] [CrossRef]
- Papuga, J.; Růžička, M. Two new multiaxial criteria for high cycle fatigue computation. Int. J. Fatigue 2008, 30, 58–66. [Google Scholar] [CrossRef]
- Papuga, J.; Halama, R. Mean stress effect in multiaxial fatigue limit criteria. Arch. Appl. Mech. 2019, 89, 823–834. [Google Scholar] [CrossRef]
- Glinka, G.; Shen, G.; Plumtree, A. A multiaxial fatigue strain energy density parameter related to the critical fracture plane. Fatigue Fract. Eng. Mater. Struct. 1995, 18, 37–46. [Google Scholar] [CrossRef]
- Pan, W.F.; Hung, C.Y.; Chen, L.L. Fatigue life estimation under multiaxial loadings. Int. J. Fatigue 1999, 21, 3–10. [Google Scholar] [CrossRef]
- Ince, A.; Glinka, G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings. Int. J. Fatigue 2014, 62, 34–41. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Zhu, S.P.; Liu, Q.; Liu, Y. Multiaxial fatigue damage parameter and life prediction without any additional material constants. Materials 2017, 10, 923. [Google Scholar] [CrossRef] [Green Version]
- Gates, N.R.; Fatemi, A. On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis. Int. J. Fatigue 2017, 100, 322–336. [Google Scholar] [CrossRef]
- Gates, N.; Fatemi, A. Friction and roughness induced closure effects on shear-mode crack growth and branching mechanisms. Int. J. Fatigue 2016, 92, 442–458. [Google Scholar] [CrossRef]
- Papadopoulos, I.V.; Davoli, P.; Gorla, C.; Filippini, M.; Bernasconi, A. A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 1997, 19, 219–235. [Google Scholar] [CrossRef]
- ASTM E2207-02; Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-Walled Tubular Specimens. ASTM Int.: West Conshohocken, PA, USA, 2002.
- Karolczuk, A.; Skibicki, D.; Pejkowski, Ł. Evaluation of the Fatemi-Socie damage parameter for the fatigue life calculation with application of the Chaboche plasticity model. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 197–208. [Google Scholar] [CrossRef]
- Skibicki, D.; Pejkowski, Ł. Low-cycle multiaxial fatigue behaviour and fatigue life prediction for CuZn37 brass using the stress-strain models. Int. J. Fatigue 2017, 102, 18–36. [Google Scholar] [CrossRef]
- Beretta, S.; Foletti, S.; Rusconi, E.; Riva, A.; Socie, D.F. A log-normal format for failure probability under LCF: Concept, validation and definition of design curve. Int. J. Fatigue 2016, 82, 2–11. [Google Scholar] [CrossRef]
- Papadopoulos, I.V. Long life fatigue under multiaxial loading. Int. J. Fatigue 2001, 23, 839–849. [Google Scholar] [CrossRef]
- Schijve, J. Statistical distribution functions and fatigue of structures. Int. J. Fatigue 2005, 27, 1031–1039. [Google Scholar] [CrossRef]
- Bastenaire, F.A.A. New method for the statistical evaluation of constant stress amplitude fatigue-test results. ASTM Spec. Tech. Publ. 1971, 3–28. [Google Scholar] [CrossRef]
- Wang, Y.; Faruq, N.Z.; Susmel, L. Evaluation of different techniques in estimating orientation of crack initiation planes and fatigue lifetime under complex multiaxial loading paths. Int. J. Fatigue 2017, 100, 521–529. [Google Scholar] [CrossRef]
- Anes, V.; Reis, L.; Li, B.; Freitas, M.; Sonsino, C.M. Minimum Circumscribed Ellipse (MCE) and Stress Scale Factor (SSF) criteria for multiaxial fatigue life assessment. Theor. Appl. Fract. Mech. 2014, 73, 109–119. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, S.P.; Hao, Y.Z.; Liao, D. Critical plane–based multiaxial fatigue life prediction of turbine disk alloys by refining normal stress sensitivity. J. Strain Anal. Eng. Des. 2018, 53, 719–729. [Google Scholar] [CrossRef]
- Skibicki, D.; Pejkowski, Ł. Integral fatigue criteria evaluation for life estimation under uniaxial combined proportional and non-proportional loadings. J. Theor. Appl. Mech. 2012, 50, 1073–1086. [Google Scholar]
- Mršnik, M.; Slavič, J.; Boltežar, M. Multiaxial vibration fatigue—A theoretical and experimental comparison. Mech. Syst. Signal Process. 2016, 76–77, 409–423. [Google Scholar] [CrossRef]
- Karolczuk, A.; Kluger, K.; Łagoda, T. A correction in the algorithm of fatigue life calculation based on the critical plane approach. Int. J. Fatigue 2016, 83, 174–183. [Google Scholar] [CrossRef]
- Fatemi, A.; Kurath, P. Multiaxial fatigue life predictions under the influence of mean-stresses. J. Eng. Mater. Technol. ASME 1988, 110, 380–388. [Google Scholar] [CrossRef]
- Pejkowski, Ł.; Karuskevich, M.; Maslak, T. Extrusion/intrusion structure as a fatigue indicator for uniaxial and multiaxial loading. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2315–2324. [Google Scholar] [CrossRef]
- Sakane, M.; Itoh, T. Microstructural study of multiaxial low cycle fatigue. Frat. Integritá Strutt. 2015, 9, 319–334. [Google Scholar] [CrossRef]
- Skibicki, D. Multiaxial fatigue life and strength criteria for non-proportional loading. Mater. Test. 2006, 48, 99–102. [Google Scholar] [CrossRef]
- Itoh, T.; Kameoka, M.; Obataya, Y. A new model for describing a stable cyclic stress-strain relationship under non-proportional loading based on activation state of slip systems. Fatigue Fract. Eng. Mater. Struct. 2004, 27, 957–966. [Google Scholar] [CrossRef]
- Kang, G.; Gao, Q.; Yang, X. Uniaxial and non-proportionally multiaxial ratcheting of SS304 stainless steel at room temperature: Experiments and simulations. Int. J. Non. Linear. Mech. 2004, 39, 843–857. [Google Scholar] [CrossRef]
- Meggiolaro, M.A.; De Castro, J.T.P. Prediction of non-proportionality factors of multiaxial histories using the Moment of Inertia method. Int. J. Fatigue 2014, 61, 151–159. [Google Scholar] [CrossRef]
- Skibicki, D.; Sempruch, J. Use of a load non-proportionality measure in fatigue under out-of-phase combined bending and torsion. Fatigue Fract. Eng. Mater. Struct. 2004, 27, 369–377. [Google Scholar] [CrossRef]
- Meggiolaro, M.A.; De Castro, J.T.P. An improved multiaxial rainflow algorithm for non-proportional stress or strain histories—Part I: Enclosing surface methods. Int. J. Fatigue 2012, 42, 217–226. [Google Scholar] [CrossRef]
- Papuga, J.; Cízová, E.; Karolczuk, A. Validating the methods to process the stress path in multiaxial high-cycle fatigue criteria. Materials 2021, 14, 206. [Google Scholar] [CrossRef]
No | Predictor | Description |
---|---|---|
1 | Shear strain amplitude—primary parameter at LCF for materials with dominant micro shear cracking | |
2 | Shear stress amplitude—primary parameter at HCF for materials with dominant micro shear cracking | |
3 | Normal strain amplitude—primary parameter at LCF for materials with dominant tensile cracking or materials with mixed shear/tensile cracking | |
4 | Normal stress amplitude—primary parameter at HCF for materials with dominant tensile cracking or materials with mixed shear/tensile cracking | |
5 | Mean value of normal stress—primary parameter at HCF for materials with dominant tensile cracking or materials with mixed shear/tensile cracking. It reflects the beneficial effect of compressive mean stress for fatigue |
E (GPa) | G (MPa) | (MPa) | (MPa) | (MPa) | |||
105 | 0.33 | 0.50 | 39.5 | 366 | 138 | 819 | 0.2142 |
(MPa) | (MPa) | ||||||
0.5065 | −0.4370 | 204 | −0.0475 | 0.3853 | −0.5269 | 393 | −0.0526 |
Kernel | Length-Scales | Scale-Mixture Parameter | Standard Deviation of the Noise | Standard Deviation of the (Noise-Free) Signal | ||
---|---|---|---|---|---|---|
, (-) | , (MPa) | , (MPa) | , (-) | , (-) | , (-) | |
M3/2 | 0.1239 | 480.5 | 2430 | - | 0.1099 | 6.74 |
M5/2 | 0.0921 | 262.8 | 1581 | - | 0.1106 | 6.12 |
RQ | 0.0720 | 176.5 | 1091 | 1.527 × 105 | 0.1109 | 5.75 |
SE | 0.0720 | 176.5 | 1091 | - | 0.1109 | 5.75 |
Kernel | Length Scales | Scale-Mixture Parameter | Standard Deviation of the Noise | Standard Deviation of the (Noise Free) Signal | |
---|---|---|---|---|---|
, (-) | , (MPa) | , (-) | , (-) | , (-) | |
M3/2 | 0.0657 | 1996 | - | 0.1005 | 6.16 |
M5/2 | 0.0321 | 1094 | - | 0.1059 | 5.40 |
RQ | 0.0361 | 1344 | 0.1301 | 0.1079 | 6.00 |
SE | 0.0187 | 712.0 | - | 0.1096 | 5.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karolczuk, A.; Skibicki, D.; Pejkowski, Ł. Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress–Strain Conditions. Materials 2022, 15, 7797. https://doi.org/10.3390/ma15217797
Karolczuk A, Skibicki D, Pejkowski Ł. Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress–Strain Conditions. Materials. 2022; 15(21):7797. https://doi.org/10.3390/ma15217797
Chicago/Turabian StyleKarolczuk, Aleksander, Dariusz Skibicki, and Łukasz Pejkowski. 2022. "Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress–Strain Conditions" Materials 15, no. 21: 7797. https://doi.org/10.3390/ma15217797
APA StyleKarolczuk, A., Skibicki, D., & Pejkowski, Ł. (2022). Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress–Strain Conditions. Materials, 15(21), 7797. https://doi.org/10.3390/ma15217797