Influence of Fabrication Method and Surface Modification of Alumina Ceramic on the Microstructure and Mechanical Properties of Ceramic–Elastomer Interpenetrating Phase Composites (IPCs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Surface Roughness Test of Dense Alumina Ceramics
3.2. The Contact Angle Measurements of Dense Alumina Ceramics
3.3. Shear Strength of an Interface Joint
3.4. SEM Observations of Ceramic–Elastomer Joint
3.5. Mechanical Properties of Porous Alumina Ceramic
3.6. SEM Observations of Composites
3.7. Residual Porosity Measurement of Composites
3.8. Mechanical Properties of Composites
4. Conclusions
- The application of hot isostatic pressure in the fabrication process of solid alumina ceramic affects slightly the roughness of the ceramic surface; however, in the case of porous ceramic, preforms’ mechanical strength increases by over 100%, from 10.2 MPa to 21.3 MPa for samples with 20% porosity fabricated by HIP application.
- Silane solution coat application achieved a significant improvement in the ceramic surface’s wettability. The water contact angle was reduced from 80% to 60%.
- A decrease in the contact angle facilitated the infiltration process of the porous ceramic preform by the elastomer. As a result, the degree of filling of the pores by the elastomer reactive mixture was enhanced for the ceramic–elastomer composite. Moreover, the residual porosity of composites decreased to 2%.
- The mechanical properties of composites, such as compressive strength and stress at the plateau increased for composites fabricated using porous ceramic coated by the solution of coupling agent. As a result of using the silane coat, compressive strength, as well as stress at a plateau, increased by more than 20%, from 25 MPa to 33 MPa and from 15 MPa to 24 MPa, respectively, for the composites fabricated by infiltration ceramic preforms with 40% of porosity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Z.; Zhang, B.; Liu, Y.; Suo, T.; Xu, P.; Zhang, J. Interpenetrating phase composite foam based on porous aluminum skeleton for high energy absorption. Polym. Test. 2021, 93, 106917. [Google Scholar] [CrossRef]
- Aldrich, D.E.; Fan, Z. Microstructural characterisation of interpenetrating nickel/alumina composites. Mater. Charact. 2001, 47, 167–173. [Google Scholar] [CrossRef]
- Shouren, W.; Haoran, G.; Jingchun, Z.; Yingzi, W. Interpenetrating microstructure and properties of Si3N4/Al–Mg composites fabricated by pressureless infiltration. Appl. Compos. Mater. 2006, 13, 115–126. [Google Scholar] [CrossRef]
- Roy, S.; Schell, K.G.; Bucharsky, E.C.; Weidenmann, K.A.; Wanner, A.; Hoffmann, M.J. Processing and characterization of elastic and thermal expansion behaviour of interpenetrating Al12Si/alumina composites. Mater. Sci. Eng. A 2019, 743, 339–348. [Google Scholar] [CrossRef]
- Scherm, F.; Volkl, R.; Neubrand, A.; Bosbach, F.; Glatzel, U. Mechanical characterisation of interpenetrating network metal–ceramic composites. Mater. Sci. Eng. A 2010, 527, 1260–1265. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, Z.; Lv, J.; Xu, G.; Zhou, S. Interface design in 3D-SiC/Al-Si-Mg interpenetrating composite fabricated by pressureless infiltration. Ceram. Int. 2018, 44, 11956–11965. [Google Scholar] [CrossRef]
- Pech-Canul, M.I.; Katz, R.N.; Makhlouf, M.M.; Pickard, S. The role of silicon in wetting and pressureless infiltration of SiC preforms by aluminum alloys. J. Mater. Sci. 2000, 35, 2167–2173. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, G.; Li, Z.; Chen, L.; Han, W.; Du, Z. A novel approach to fabricate ceramic/metal interpenetrating phase composites by ultrasonic-assisted spontaneous infiltration. Ceram. Int. 2021, 47, 2903–2907. [Google Scholar] [CrossRef]
- Boczkowska, A.; Konopka, K.; Schmidt, J.; Kurzydłowski, K.J. Investigation of elastomer structure and adhesion effect on compression strength of ceramic-elastomer composites. Kompoz. (Compos.) 2004, 9, 41–46. [Google Scholar]
- Steier, V.F.; Koplin, C.; Kailer, A. Influence of pressure-assisted polymerization on the microstructure and strength of polymer-infiltrated ceramics. J. Mater. Sci. 2013, 48, 3239–3247. [Google Scholar] [CrossRef]
- Zhou, R.; Lu, D.H.; Jiang, Y.H.; Li, Q.N. Mechanical properties and erosion wear resistance of polyurethane matrix composites. Wear 2005, 259, 676–683. [Google Scholar] [CrossRef]
- Marciniec, B.; Guliński, J. Silane coupling agents. Polimery 1995, 2, 77–81. [Google Scholar] [CrossRef]
- Szafran, M.; Rokicki, G.; Bobryk, E.; Lamenta, A. Ceramics-polymer composites based on porous ceramic material with porosity gradient. Kompoz. (Compos.) 2004, 4, 231–236. [Google Scholar]
- Colde, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Miyata, N.; Matsuura, W.; Kokubo, T.; Nakamura, T. Mechanical behavior of bioactive composite cements consisting of resin and glass-ceramic powder in a simulated body fluid: Effect of silane coupling agent. J. Mater. Sci. Mater. Med. 2004, 15, 1013–1020. [Google Scholar] [CrossRef]
- Sonoda, K.; Juuti, J.; Moriya, Y.; Jantunen, H. Modification of the dielectric properties of 0-3 ceramic-polymer composites by introducing surface active agents onto the ceramic filler surface. Compos. Struct. 2010, 92, 1052–1058. [Google Scholar] [CrossRef]
- Jhaver, R.; Tippur, H. Compression response of syntactic foam based interpenetrating phase composites. In Proceedings of the 11th International Congress and Exposition, Orlando, FL, USA, 2–5 June 2008. [Google Scholar]
- Jhaver, R.; Tippur, H. Processing, compression response and finite element modeling of syntactic foam based interpenetrating phase composites (IPC). Mater. Sci. Eng. A 2009, 499, 507–517. [Google Scholar] [CrossRef]
- Muchtar, A.; Lim, L.C. Indentation fracture toughness of high purity submicron alumina. Acta Mater. 1998, 46, 1683–1690. [Google Scholar] [CrossRef]
- Rice, R.W. Review ceramic tensile strength-grain size relations: Grain sizes, slopes, and branch intersections. J. Mater. Sci. 1997, 32, 1673–1692. [Google Scholar] [CrossRef]
- Koo, J.B.; Hong, K.J.; Park, J.S.; Shin, D.C. Effect of grain size on transmittance and mechanical strength of sintered alumina. Mater. Sci. Eng. 2004, 374, 191–195. [Google Scholar]
- Rice, R.W.; Wu, C.C.; Borchelt, F. Hardness–Grain-size relations in ceramics. J. Am. Ceram. Soc. 1994, 78, 2539–2553. [Google Scholar] [CrossRef]
- Shao, G.; Hanaor, D.A.; Shen, X.; Gurlo, A. Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures—A Review of Novel Materials, Methods, and Applications. Adv. Mater. 2020, 32, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Ma, J. Densification and grain growth during interface reaction controlled sintering of alumina ceramics. Ceram. Int. 2001, 27, 261–264. [Google Scholar] [CrossRef]
- Al-Jawoosh, S.; Ireland, A.; Su, B. Characterisation of mechanical and surfaceproperties of novel biomimetic interpenetratingalumina-polycarbonate composite materials. Dent. Mater. 2020, 36, 1595–1607. [Google Scholar] [CrossRef]
- Figiel, P.; Rozmus, M.; Smuk, B. Properties of alumina ceramics obtained by conventional and non-conventional methods for sintering ceramics. J. Achiev. Mater. Manuf. Eng. 2011, 48, 29–34. [Google Scholar]
- Thomas, S.; Raman, S.; Mohanan, P.; Sebastian, M.T. Effect of coupling agent on the thermal and dielectric properties of PTFE/Sm2Si2O7 composites. Compos. A 2010, 41, 1148–1155. [Google Scholar] [CrossRef]
- Hoikkanen, M.; Honkanen, M.; Vippola, M.; Lepistö, T.; Vuorinen, J. Effect of silane treatment parameters on the silane layer formation and bonding to thermoplastic urethane. Prog. Org. Coat. 2011, 72, 716–723. [Google Scholar] [CrossRef]
- Chabera, P.; Boczkowska, A.; Witek, A.; Oziębło, A. Fabrication and characterization of lightweight ceramic/ polyurethane composites. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 193–199. [Google Scholar]
- QI, Z.; Liao, L.; Wang, R.; Zhang, Y.; Yuan, Z. Roughness-dependent wetting and surface tension of molten lead on alumina. Trans. Nonferrous Met. Soc. China 2021, 31, 2511–2521. [Google Scholar] [CrossRef]
- Chaijareenont, P.; Takahashi, H.; Nishiyama, N.; Arksornnukit, M. Effects of silane coupling agents and solutions of different polarity on PMMA bonding to alumina. Dent. Mater. 2014, 31, 4. [Google Scholar] [CrossRef] [Green Version]
- Lung, C.Y.K.; Matinlinna, J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012, 28, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.X.; Fan, Z.; Evans, J.R.G.; Busfield, J.J.C. Microstructure of ceramic foams. J. Eur. Ceram. Soc. 2000, 20, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Zeschky, J.; Goetz-Neunhoeffer, F.; Neubauer, J.; Jason Lo, S.H.; Kummer, B.; Scheffler, M.; Greil, P. Preceramic polymer derived cellular ceramics. Compos. Sci. Technol. 2003, 63, 2361–2370. [Google Scholar] [CrossRef]
- Miller, A.C.; Berg, J.C. Effect of silane coupling agent adsorbate structure on adhesion performance with a polymeric matrix. Compos. A 2003, 34, 327–332. [Google Scholar] [CrossRef]
- Boczkowska, A.; Konopka, K.; Kurzydłowski, K.J. Effect of elastomer structure on ceramic–elastomer composite properties. J. Mater. Process. Technol. 2006, 175, 40–44. [Google Scholar] [CrossRef]
- Navya Kota, N.; Charan, M.S.; Laha, T.; Roy, S. Review on development of metal/ceramic interpenetrating phase composites and critical analysis of their properties. Ceram. Int. 2022, 48, 1451–1483. [Google Scholar] [CrossRef]
Material | Type of Applied Final Stage of a Fabrication Method | Porosity [%] | Compressive Strength [MPa] |
---|---|---|---|
Al2O3-SS-20 | Pressureless sintering | 22 ± 0.5 | 10.2 ± 2.1 |
Al2O3-SS-40 | 41 ± 1.0 | 6.5 ± 1.2 | |
Al2O3-HIP200-20 | Hot isostatic pressing | 23 ± 0.7 | 21.3 ± 3.0 |
Al2O3-HIP200-40 | 40.5 ± 2.0 | 17.6 ± 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozera, P.; Boczkowska, A.; Perkowski, K.; Małek, M.; Kluczyński, J. Influence of Fabrication Method and Surface Modification of Alumina Ceramic on the Microstructure and Mechanical Properties of Ceramic–Elastomer Interpenetrating Phase Composites (IPCs). Materials 2022, 15, 7824. https://doi.org/10.3390/ma15217824
Kozera P, Boczkowska A, Perkowski K, Małek M, Kluczyński J. Influence of Fabrication Method and Surface Modification of Alumina Ceramic on the Microstructure and Mechanical Properties of Ceramic–Elastomer Interpenetrating Phase Composites (IPCs). Materials. 2022; 15(21):7824. https://doi.org/10.3390/ma15217824
Chicago/Turabian StyleKozera, Paulina, Anna Boczkowska, Krzysztof Perkowski, Marcin Małek, and Janusz Kluczyński. 2022. "Influence of Fabrication Method and Surface Modification of Alumina Ceramic on the Microstructure and Mechanical Properties of Ceramic–Elastomer Interpenetrating Phase Composites (IPCs)" Materials 15, no. 21: 7824. https://doi.org/10.3390/ma15217824
APA StyleKozera, P., Boczkowska, A., Perkowski, K., Małek, M., & Kluczyński, J. (2022). Influence of Fabrication Method and Surface Modification of Alumina Ceramic on the Microstructure and Mechanical Properties of Ceramic–Elastomer Interpenetrating Phase Composites (IPCs). Materials, 15(21), 7824. https://doi.org/10.3390/ma15217824