Role of Density and Grain Size on the Electrocaloric Effect in Ba0.90Ca0.10TiO3 Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural and Microstructural Characteristics
3.2. Low Field Properties
3.3. Ferroelectric Properties
3.4. Electrocaloric Properties
4. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moya, X.; Kar-Narayan, S.; Mathur, N. Caloric materials near ferroic phase transitions. Nat. Mater. 2014, 13, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Mischenko, A.S.; Zhang, Q.; Scott, J.F.; Whatmore, R.W.; Mathur, N.D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 2006, 311, 1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shvartsman, V.V.; Lupascu, D.C. Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 2012, 95, 1–26. [Google Scholar] [CrossRef]
- Zhu, L.F.; Zhang, B.P.; Zhao, X.K.; Zhao, L.; Zhou, P.F.; Li, J.F. Enhanced piezoelectric properties of (Ba1−xCax)(Ti0.92Sn0.08)O3 lead-free ceramics. J. Am. Ceram. Soc. 2013, 96, 241–245. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Dkhil, B.; Xu, B.; Dong, X.W.G.; Yang, G.; Lou, X. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl. Phys. Lett. 2017, 110, 063904. [Google Scholar] [CrossRef]
- Jian, X.D.; Lu, B.; Li, D.D.; Yao, Y.B.; Tao, T.; Liang, B.; Guo, J.H.; Zeng, Y.J.; Chen, J.L.; Lu, S.G. Direct measurement of large electrocaloric effect in Ba(ZrxTi1−x)O3 ceramics. ACS Appl. Mater. Interfaces 2018, 10, 4801. [Google Scholar] [CrossRef]
- Bai, Y.; Ding, K.; Zheng, G.P.; Shi, S.Q.; Qiao, L. Entropy-change measurement of electrocaloric BaTiO3 single crystal. Phys. Status Solidi A 2012, 209, 941–944. [Google Scholar] [CrossRef]
- Niu, X.; Jian, X.; Chen, X.; Li, H.; Liang, W.; Yao, Y.; Tao, T.; Liang, B.; Lu, S.G. Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement. J. Adv. Ceram. 2021, 10, 482–492. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Dkhil, B.; Zhao, C.; Li, T.; Li, W.; Lou, X. Large electrocaloric strength and broad electrocaloric temperature span in lead-free Ba0.85Caj0.15Ti1−xHfxO3 ceramics. RSC Adv. 2017, 7, 5813. [Google Scholar] [CrossRef] [Green Version]
- Veehuis, H.; Borger, T.; Peithmann, K.; Flaspohler, M.; Buse, K.; Pankrath, R.; Hesse, H.; Kratzig, E. Light-induced charge-transport properties of photorefractive barium-calcium-titanate crystals doped with rhodium. Appl. Phys. B 2000, 70, 797–801. [Google Scholar] [CrossRef]
- McQuarrie, M.; Behnke, F.W. Structural and dielectric studies in the system (Ba,Ca)(Zr,Ti)O3. J. Am. Ceram. Soc. 1954, 37, 539. [Google Scholar] [CrossRef]
- Mitsui, T.; Westphal, W.B. Dielectric and X-ray studies of CaxBa1−xTiO3 and CaxSr1−xTiO3. Phys. Rev. 1961, 124, 1354. [Google Scholar] [CrossRef]
- Wang, X.; Yamada, H.; Xu, C.N. Large electrostriction near the solubility limit in BaTiO3-CaTiO3 ceramics. Appl. Phys. Lett. 2012, 86, 022905. [Google Scholar] [CrossRef]
- Wang, X.; Xu, C.N.; Yamada, H.; Nishikubo, K.; Zheng, X.G. Electro-mechano-optical conversions in Pr3+ doped BaTiO3-CaTiO3 ceramics. Adv. Mater. 2005, 17, 1254. [Google Scholar] [CrossRef]
- Krishna, P.S.R.; Pandey, D.; Tiwari, V.S.; Chakravarthy, R. Dasannacharya, B.A., Effect of powder synthesis procedure on calcium site occupancies in barium calcium titanate: A Rietveld analysis. Appl. Phys. Lett. 1993, 62, 231. [Google Scholar] [CrossRef]
- Panigrahi, M.R.; Panigrahi, S. Synthesis and microstructure of Ca-doped BaTiO3 ceramics prepared by high-energy ball-milling. Phys. B Condens. Matter 2009, 404, 4267–4272. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Fatima, I.; Reddy, V.R. Study of electrocaloric effect in Ca and Sn co-doped BaTiO3 ceramics. Mater. Res. Express 2017, 4, 046303. [Google Scholar] [CrossRef] [Green Version]
- Anokhin, A.S.; Eskov, A.V.; Pakhomov, O.V.; Semenov, A.A.; Lahderanta, E. Electrocaloric effect and dielectric properties in ferroelectric ceramics based on solid solution of barium-calcium titanate. J. Physics Conf. Ser. 2019, 1400, 077004. [Google Scholar] [CrossRef]
- Merselmiz, S.; Hanani, Z.; Moumen, S.B.; Matavz, A.; Mezzane, D.; Novak, N.; Abkhar, Z.; Hajji, L.; Amjoud, M.; Gagou, Y.; et al. Enhanced electrical properties and large electrocaloric effect in lead-free Ba0.8Ca0.2ZrxTi1−xO3 (x = 0 and 0.02) ceramics. J. Mater Sci Mater Electron. 2020, 31, 17018–17028. [Google Scholar] [CrossRef]
- Lukacs, V.A.; Stanculescu, R.; Curecheriu, L.; Ciomaga, C.E.; Horchidan, N.; Cioclea, C.; Mitoseriu, L. Structural and functional properties of BaTiO3 porous ceramics produced by using pollen as sacrificial template. Ceram. Int. 2020, 46, 523–530. [Google Scholar] [CrossRef]
- Padurariu, L.; Curecheriu, L.P.; Ciomaga, C.E.; Airimioaei, M.; Horchidan, N.; Cioclea, C.; Al Lukacs, V.; Stirbu, R.S.; Mitoseriu, L. Modifications of structural, dielectric and ferroelectric properties induced by porosity in BaTiO3 ceramics with phase coexistence. J. Alloys Comp. 2021, 889, 161699. [Google Scholar] [CrossRef]
- Curecheriu, L.; Al Lukacs, V.; Padurariu, L.; Stoian, G.; Ciomaga, C.E. Effect of porosity on functional properties of lead-free piezoelectric BaZr0.15Ti0.85O3 porous ceramics. Materials 2020, 13, 3324. [Google Scholar]
- Polotai, A.V.; Ragulya, A.V.; Randall, C.A. Preparation and size effect in pure nanocrystalline barium titanate ceramics. Ferroelectrics 2003, 288, 93–102. [Google Scholar] [CrossRef]
- Fu, D.; Itoh, M.; Koshihara, S. Invariant lattice strain and polarization in BaTiO3-CaTiO3 ferroelectric alloys. J. Phys. Condens. Matter 2010, 22, 052204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padurariu, L.; Curecheriu, L.; Ciomaga, C.; Horchidan, N.; Galassi, C.; Mitoseriu, L. Role of the pore interconnectivity on the dielectric, switching and tunability properties of PZTN ceramics. Ceram. Int. 2017, 43, 5767–5773. [Google Scholar] [CrossRef]
- Padurariu, L.; Curecheriu, L.P.; Mitoseriu, L. Nonlinear dielectric properties of paraelectric-dielectric composites described by a 3D Finite Element Method based on Landau-Devonshire theory. Acta Mater. 2016, 103, 724–734. [Google Scholar] [CrossRef]
- Moya, X.; Stern-Taulats, E.; Crossley, S.; Gonzalez-Alonso, D.; Kar-Narayan, S.; Planes, A.; Manosa, L.; Mathur, N.D. Giant electrocaloric strengh in single-crystal BaTiO3. Adv. Mater. 2013, 25, 1360. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, S.; Zeng, Y.; Zhang, Y.; Zhang, Q.; Yu, Y. High pyroelectric properties of porous Ba0.67Sr0.33TiO3 uncooled infrared detectors. J. Am. Ceram. Soc. 2009, 92, 3132. [Google Scholar] [CrossRef]
- Curecheriu, L.; Ianculescu, A.C.; Horchidan, N.; Stoleriu, S.; Tudorache, F.; Tascu, S.; Mitoseriu, L. Temperature dependence of tunability of Ba(SnxTi1−x)O3 ceramics. J. Appl. Phys. 2011, 109, 084103. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Qin, S.; Li, T.; Wu, M.; Wang, D.; Bai, Y.; Lou, X. Large room-temperature electrocaloric effect in lead-free BaHfxTi1−xO3 ceramics under low electric field. Acta Mater. 2016, 115, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Hanani, Z.; Mezzane, D.; Amjoud, M.; Razumnaya, A.G.; Fourcade, S.; Gagou, Y.; Hoummada, K.; El Marssi, M.; Gouné, M. Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor. J. Mater. Sci. Mater. Electron. 2019, 30, 6430–6438. [Google Scholar] [CrossRef]
- Hanani, Z.; Merselmiz, S.; Danime, A.; Stein, N.; Mezzane, D.; Amjoud, M.; Lahcini, M.; Gagou, Y.; Spreitzer, M.; Vengust, D.; et al. Enhanced dielectric and electrocaloric properties in lead-free rod-like BCTZ ceramics. J. Adv. Ceram. 2020, 9, 210–219. [Google Scholar] [CrossRef]
Sample | Thermal Treatment (°C/4 h) | Relative Density (%) | ε (f = 10 kHz) | Psat (µC/cm2) | Prem (µC/cm2) | Prem/Psat |
---|---|---|---|---|---|---|
BCT21 | 1300 | 79 | 815 | 7.21 | 2.17 | 0.30 |
BCT11 | 1350 | 89 | 861 | 11.08 | 4.88 | 0.44 |
BCT8 | 1375 | 92 | 907 | 14.10 | 8.73 | 0.62 |
BCT7 | 1400 | 93 | 927 | 15.09 | 9.89 | 0.65 |
BCT3 | 1425 | 97 | 1063 | 15.5 | 8.53 | 0.55 |
BCT2 | 1450 | 98 | 1099 | 16.11 | 9.19 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curecheriu, L.; Buscaglia, M.T.; Lukacs, V.A.; Padurariu, L.; Ciomaga, C.E. Role of Density and Grain Size on the Electrocaloric Effect in Ba0.90Ca0.10TiO3 Ceramics. Materials 2022, 15, 7825. https://doi.org/10.3390/ma15217825
Curecheriu L, Buscaglia MT, Lukacs VA, Padurariu L, Ciomaga CE. Role of Density and Grain Size on the Electrocaloric Effect in Ba0.90Ca0.10TiO3 Ceramics. Materials. 2022; 15(21):7825. https://doi.org/10.3390/ma15217825
Chicago/Turabian StyleCurecheriu, Lavinia, Maria Teresa Buscaglia, Vlad Alexandru Lukacs, Leontin Padurariu, and Cristina Elena Ciomaga. 2022. "Role of Density and Grain Size on the Electrocaloric Effect in Ba0.90Ca0.10TiO3 Ceramics" Materials 15, no. 21: 7825. https://doi.org/10.3390/ma15217825
APA StyleCurecheriu, L., Buscaglia, M. T., Lukacs, V. A., Padurariu, L., & Ciomaga, C. E. (2022). Role of Density and Grain Size on the Electrocaloric Effect in Ba0.90Ca0.10TiO3 Ceramics. Materials, 15(21), 7825. https://doi.org/10.3390/ma15217825