Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Straw Materials and Their Processing
2.2. Chemical Analyses
2.3. Preparation of Straw-Based Fibre Materials
2.4. Characterisation of the Formed Sheets
2.5. Evaluation of Potential Applications and Business Cases
2.6. Analysis of Logistics
3. Results
3.1. Chemical Composition of Straw Raw Materials
3.2. Properties of the Formed Sheet Samples
4. Discussion
4.1. Potential Applications and Business Cases
4.2. Logistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
STRENGTH | WEAKNESS |
Supports circular bioeconomy
| Availability and supply security of straw is uncertain
|
OPPORTUNITY | THREAT |
Green growth
| Overharvesting
|
References
- The Finnish Bioeconomy strategy. The Ministry of Employment and the Economy. 2014. Available online: https://biotalous.fi/wp-content/uploads/2014/08/The_Finnish_Bioeconomy_Strategy_110620141.pdf (accessed on 20 September 2022).
- European Commission. Directorate-General for Research and Innovation, A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment; Updated Bioeconomy Strategy; Publications Office: Luxembourg, 2018. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: New EU Forest Strategy for 2030; COM/2021/572 final; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- European Commission. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achievi.ng Climate Neutrality and Amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’); European Commission: Brussels, Belgium, 2021. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions EU Biodiversity Strategy for 2030 Bringing Nature Back Into Our Lives; COM/2020/380 final; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- European Commission; Joint Research Centre; Parisi, C. Biorefineries Distribution in the EU; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-94882-4. [Google Scholar]
- Clariant Completes Construction of First Commercial Sunliquid® Cellulosic Ethanol Plant in Podari, Romania. Available online: https://www.clariant.com/en/Corporate/News/2021/10/Clariant-completes-construction-of-first-commercial-sunliquid-cellulosic-ethanol-plant-in-Podari-Rom (accessed on 29 March 2022).
- Essity Begins Tissue Production from Alternative Fibers. Press Release. Available online: https://www.essity.com/media/press-release/essity-begins-tissue-production-from-alternative-fibers/281bcb2a616bfa8d/ (accessed on 29 March 2022).
- Fortum Bio2X: High-Value Products from Biomass. Available online: https://www.fortum.com/products-and-services/biobased-solutions/bio2x (accessed on 29 March 2022).
- Red Leaf Pulp, Project Details. Available online: https://www.redleafpulp.com/project (accessed on 29 March 2022).
- Red Leaf Pulp, Sustainability. Available online: https://www.redleafpulp.com/esg (accessed on 7 April 2022).
- Pafcuga, M.; Holubcik, M.; Durcansky, P.; Kapjor, A.; Malcho, M. Small heat source used for combustion of wheat-straw pellets. Appl. Sci. 2021, 11, 5239. [Google Scholar] [CrossRef]
- Deswarte, F.E.I.; Clark, J.H.; Wilson, A.J.; Hardy, J.J.E.; Marriott, R.; Chahal, S.P.; Jackson, C.; Heslop, G.; Birkett, M.; Bruce, T.J.; et al. Toward an integrated straw-based biorefinery. Biofuels Bioprod. Biorefining 2007, 1, 245–254. [Google Scholar] [CrossRef]
- Siedt, M.; Schäffer, A.; Smith, K.E.C.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhu, J.; Yang, X.; Fu, Q.; Hu, H.; Huang, Q. Biochar produced from the straw of common crops simultaneously stabilizes soil organic matter and heavy metals. Sci. Total Environ. 2022, 828, 154494. [Google Scholar] [CrossRef] [PubMed]
- Tijani, M.M.; Aqsha, A.; Mahinpey, N. Development of oil-spill sorbent from straw biomass waste: Experiments and modeling studies. J. Environ. Manag. 2016, 171, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Everall, N.C.; Lees, D.R. The use of barley-straw to control general and blue-green algal growth in a Derbyshire reservoir. Water Res. 1996, 30, 269–276. [Google Scholar] [CrossRef]
- Nielsen, C. Utilisation of straw and similar agricultural residues. Biomass Bioenergy 1995, 9, 315–323. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Lazzaretto, A.; Manente, G.; Tong, C.; Liu, Q.; Li, N. The development history and prospects of biomass-based insulation materials for buildings. Renew. Sustain. Energy Rev. 2017, 69, 912–932. [Google Scholar] [CrossRef]
- Landpack, Landbox Straw the Efficient and Environmentally Friendly Insulating Packaging. Available online: https://landpack.de/en/food/insulated-packaging-made-of-straw (accessed on 6 April 2022).
- Halvarsson, S.; Edlund, H.; Norgren, M. Properties of medium-density fibreboard (MDF) based on wheat straw and melamine modified urea formaldehyde (UMF) resin. Ind. Crops Prod. 2008, 28, 37–46. [Google Scholar] [CrossRef]
- Great Plains MFD. Available online: https://greatplainsmdf.com/ (accessed on 6 April 2022).
- Fortum, Straw-Based Textile Fibre by Fortum Bio2X Debuts in an International Fashion Event. Available online: https://www.fortum.com/media/2021/02/straw-based-textile-fibre-fortum-bio2x-debuts-international-fashion-event (accessed on 6 April 2022).
- Santos, A.S.; Ferreira, P.J.T.; Maloney, T. Bio-based materials for nonwovens. Cellulose 2021, 28, 8939–8969. [Google Scholar] [CrossRef]
- Hein, T. New kid on the block. Pulp Pap. Can. 2021, 122, 18–20. [Google Scholar]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Patel, A.; Shah, A.R. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. J. Bioresour. Bioprod. 2021, 6, 108–128. [Google Scholar] [CrossRef]
- Yan, M.; Wu, T.; Ma, J.; Lu, H.; Zhou, X. A systematic study of lignocellulose nanofibrils (LCNF) prepared from wheat straw by varied acid pretreatments. Ind. Crops Prod. 2022, 185, 115126. [Google Scholar] [CrossRef]
- FAO Crops and Livestock Products. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 October 2022).
- Hjelt, T.; Ketoja, J.A.; Kiiskinen, H.; Koponen, A.I.; Pääkkönen, E. Foam forming of fiber products: A review. J. Dispers. Sci. Techn. 2022, 43, 1462–1497. [Google Scholar] [CrossRef]
- Joelsson, T.; Pettersson, G.; Norgren, S.; Svedberg, A.; Höglund, H.; Engstrand, P. High strength paper from high yield pulps by means of hot-pressing. Nordic Pulp Paper Res. J. 2020, 35, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Joelsson, T.; Svedberg, A.; Norgren, S.; Pettersson, G.; Berg, J.-E.; Garcia-Lindgren, C.; Engstrand, P. Unique steel belt press technology for high strength papers from high yield pulp. SN Appl. Sci. 2021, 3, 561. [Google Scholar] [CrossRef]
- Joelsson, T. The Influence of Pulp Type and Hot-Pressing Conditions on Paper Strength Development. Ph.D. Thesis, Mid Sweden University, Sundsvall, Sweden, 2021. Available online: https://www.diva-portal.org/smash/get/diva2:1611828/FULLTEXT01.pdf (accessed on 20 September 2022).
- Goldschmid, O. Ultraviolet spectra. In Lignins: Occurrence, Formation, Structure and Reactions; Sarkanen, K.V., Ludwig, C.H., Eds.; John Wiley & Sons: New York, NY, USA, 1971; pp. 241–266. [Google Scholar]
- Nordlund, E.; Lille, M.; Silventoinen, P.; Nygren, H.; Seppänen-Laakso, T.; Mikkelson, A.; Aura, A.-M.; Heiniö, R.-L.; Nohynek, L.; Puupponen-Pimiä, R.; et al. Plant cells as food—A concept taking shape. Food Res. Int. 2018, 107, 297–305. [Google Scholar] [CrossRef]
- Kinnunen-Raudaskoski, K. Foam as a Carrier Phase—A Multipurpose Technology for Industrial Applications. Ph.D. Thesis, Aalto University, Espoo, Finland, 2017. [Google Scholar]
- Mattsson, A.; Joelsson, T.; Miettinen, A.; Ketoja, J.A.; Pettersson, G.; Engstrand, P. Lignin inter-diffusion underlying improved mechanical performance of hot-pressed paper webs. Polymers 2021, 13, 2485. [Google Scholar] [CrossRef]
- Joelsson, T.; Mattsson, A.; Ketoja, J.A.; Pettersson, G.; Engstrand, P. Lignin interdiffusion—A mechanism behind improved wet strength. In Transactions of the 17th Fundamental Research Symposium, Cambridge, UK, August/September 2022; Coffin, D.W., Batchelor, W.J., Eds.; Pulp & Paper Fundamental Research Society: Kingham, UK, 2022; Volume 1, pp. 105–118. [Google Scholar]
- Widsten, P.; Tuominen, S.; Qvintus-Leino, P.; Laine, J.E. The influence of high defibration temperature on the properties of medium-density fiberboard (MDF) made from laccase-treated softwood fibers. Wood Sci. Technol. 2004, 38, 521–528. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Teixeira, J.A. Lignocellulose as raw material in fermentation processes. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2010; pp. 897–907. [Google Scholar]
- Vargas, F.; González, Z.; Sánchez, R.; Jiménez, L.; Rodríguez, A. Cellulosic pulps of cereal straws as raw material for the manufacture of ecological packaging. BioResources 2012, 7, 4161–4170. [Google Scholar]
- Pearce, J.R.; Beard, J.; Hilliard, E.P. Variability in the chemical composition of cereal straws and in vitro digestibility with and without sodium hydroxide treatment. Aust. J. Exp. Agric. Anim. Husb. 1979, 19, 350–353. [Google Scholar] [CrossRef]
- Viola, E.; Zimbardi, F.; Cardinale, M.; Cardinale, G.; Braccio, G.; Gambacorta, E. Processing cereal straws by steam explosion in a pilot plant to enhance digestibility in ruminants. Bioresour. Technol. 2008, 99, 681–689. [Google Scholar] [CrossRef]
- Arreola-Vargas, J.; Razo-Flores, E.; Celis, L.B.; Alatriste-Mondragón, F. Sequential hydrolysis of oat straw and hydrogen production from hydrolysates: Role of hydrolysates constituents. Int. J. Hydrog. Energy 2015, 40, 10756–10765. [Google Scholar] [CrossRef]
- Yadav, M.P.; Hicks, K.B. Isolation of barley hulls and straw constituents and study of emulsifying properties of their arabinoxylans. Carbohydr. Polym. 2015, 132, 529–536. [Google Scholar] [CrossRef]
- García-Cubero, M.T.; Coca, M.; Bolado, S.; González-Benito, G. Chemical Oxidation with Ozone as Pre-treatment of Lignocellulosic Materials for Bioethanol Production. Chem. Eng. Trans. 2010, 21, 1273–1278. [Google Scholar] [CrossRef]
- Iroba, K.L.; Tabil, L.G.; Dumonceaux, T.; Baik, O.-D. Effect of alkaline pretreatment on chemical composition of lignocellulosic biomass using radio frequency heating. Biosyst. Eng. 2013, 116, 385–398. [Google Scholar] [CrossRef]
- Romaní, A.; Tomaz, P.D.; Garrote, G.; Teixeira, J.A.; Domingues, L. Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Bioresource Technol. 2016, 220, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Setiawan, W.K.; Chiang, K.-Y. Crop residues as potential sustainable precursors for developing silica materials: A review. Waste Biomass Valorization 2021, 12, 2207–2236. [Google Scholar] [CrossRef]
- Borrega, M.; Pihlajaniemi, V.; Liitiä, T.; Wikström, L.; Tamminen, T. Evaluation of chemical additives in hydrothermal pre-treatment of wood for the integrated production of monosugars and hydrolysis lignins for PLA-based biocomposites. Biomass Conv. Bioref. 2021, 1–13. [Google Scholar] [CrossRef]
- Stenius, P.; Gullichsen, J.; Paulapuro, H. (Eds.) Papermaking Science and Technology, Book 3, Forest Products Chemistry; Fapet Oy: Helsinki, Finland, 2000; p. 29. [Google Scholar]
- Hortling, B.; Tamminen, T.; Kenttä, E. Determination of carboxyl and non-conjugated carbonyl groups in dissolved and residual lignins by IR spectroscopy. Holzforschung 1997, 51, 405–410. [Google Scholar] [CrossRef]
- Antila, H. Fortum—Building the Utility of Future. Presentation 2019. Available online: https://kemianseurat.fi/wp-content/uploads/2019/12/Antila-Building-the-utility-of-future.pdf (accessed on 29 March 2022).
- Hinderer, A. Sustainable sourcing of straw. Presented at ExpandFibre seminar, virtual, 3 November 2021. [Google Scholar]
- Hinkka, V.; Palmgren, R. Challenges of adopting the principles of circular economy in sparsely populated areas: Finnish case study of organising supply of straws for cellulose production. Transp. Res. Procedia 2022. [Google Scholar]
- Fact.MR. Global on the Go Food Packaging Market Outlook. Available online: https://www.factmr.com/report/476/on-the-go-food-packaging-market (accessed on 7 April 2022).
- Thorsell, S.; Epplin, F.M.; Huhnke, R.L.; Taliaferro, C.M. Economics of a coordinated biorefinery feedstock harvest system: Lignocellulosic biomass harvest cost. Biomass Bioenergy 2004, 27, 327–337. [Google Scholar] [CrossRef]
- Suardi, A.; Bergonzoli, S.; Alfano, V.; Scarfone, A.; Pari, L. Economic distance to gather agricultural residues from the field to the integrated biomass logistic centre: A Spanish case-study. Energies 2019, 12, 3086. [Google Scholar] [CrossRef]
- Palva, R. Konetyön kustannukset ja tilastolliset urakointihinnat (in English: The costs of machine work and statistical contract prices). TTS:n julkaisuja 447, Nurmijärvi. 2019. (In Finnish) ISBN: 978-951-788-463-1. Available online: https://www.tts.fi/files/2466/Konetyon_kustannukset_ja_tilastolliset_urakointihinnat.pdf (accessed on 12 May 2022).
Fraction | Application | Source |
---|---|---|
Straw as such | Animal feed | [12] |
Soil amendment, fertilizer, garden mulch, biochar for cultivation and to remove heavy metals | [12,13,14,15] | |
Mushroom culture | [12] | |
Oil spill sorbent | [16] | |
Algae growth control in water systems | [17] | |
Energy and Power | [12,18] | |
Thermal insulation material for construction and packaging | [19,20] | |
Strawboard and MDF board | [13,21,22] | |
Fibers (cellulose) | Textiles | [23] |
Nonwovens | [24] | |
Pulp, paper and board | [8,25] | |
Biocomposites | [26] | |
Monomers and polymers (cellulose, hemicelluloses, lignin, waxes) | Chemicals: e.g., xylose, furfural, acetic acid and other intermediates | [27] |
Bioplastics and adhesives; bio-resins, polyurethane, plasticizers, adhesives (e.g., for construction materials) | [27] | |
Films and coatings | [28] | |
Waxes: biobased pesticides, polycosanols and sterols as cholesterol-reducing agents | [13] | |
Biofuels: Ethanol | [7,27] | |
Food and cosmetics ingredients, including waxes | [13] |
Property | Standard |
---|---|
Grammage (g/m2) | ISO 5270 (2012), ISO 534 (2011) |
Thickness (µm) | |
Apparent sheet density (kg/m3) | |
Bulk (cm3/kg) | |
Tensile index (Nm/g) | ISO 5270 (2012), EN ISO 1924-2:2008 |
Strain at break (%) | |
Tensile energy absorption index (J/g) | |
Tensile stiffness index (kNm/g) | |
Wet strength measurements | ISO 3781 (2011) |
Biomass NaOH Charge/Temp | Oat 12/80 | Barley 12/80 | Oat 12/160 | Oat 18/160 |
---|---|---|---|---|
NaOH charge, % of biomass | 12 | 12 | 12 | 18 |
Liquor-to-straw ratio | 6 | 6 | 6 | 6 |
Temperature, °C | 80 | 80 | 160 | 160 |
Time, min | 60 | 60 | 60 | 60 |
Liquids: | ||||
pH | 12.6 | 12.4 | 10.9 | 12.5 |
Solids: | ||||
Yield, % | 58 | 58 | 46 | 41 |
Kappa number | 48.5 ± 0.3 | 50.2 ± 0.2 | 16.6 ± 0.1 | 16.3 ± 0.0 |
Brightness, % | 12.1 ± 0.2 | 9.6 ± 0.4 | 26.5 ± 1.5 | 26.5 ± 1.6 |
Property | Oat 12/80 | Barley 12/80 | Oat 12/160 | Oat 18/160 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Unref. | Refined | Enzyme Added | Press 30 min | Unref. | Refined | Unref. | Refined | Unref. | Refined | |
Grammage, g/m2 | 122 | 116 | 113 | 119 | 111 | 113 | 121 | 119 | 100 | 101 |
Thickness, µm | 208 | 196 | 214 | 177 | 220 | 185 | 191 | 198 | 162 | 159 |
Density, kg/m3 | 587 | 592 | 528 | 672 | 505 | 611 | 634 | 601 | 617 | 635 |
DRY | ||||||||||
Tensile index, Nm/g | 11.7 ± 2.6 | 32.5 ± 4.3 | 13.0 ± 5.2 | 7.0 ± 2.4 | 10.9 ± 4.4 | 26.2 ± 2.5 | 24.4 ± 4.2 | 34.7 ± 6.6 | 21.2 ± 3.5 | 24.9 ± 4.2 |
Stretch at break, % | 1.0 ± 0.1 | 1.9 ± 0.3 | 1.0 ± 0.2 | 0.7 ± 0.2 | 0.9 ± 0.3 | 1.6 ± 0.2 | 1.9 ± 0.3 | 2.7 ± 0.5 | 2.1 ± 0.4 | 2.5 ± 0.6 |
TEA * index, J/g | 0.08 ± 0.02 | 0.37 ± 0.10 | 0.10 ± 0.06 | 0.04 ± 0.02 | 0.06 ± 0.05 | 0.24 ± 0.04 | 0.29 ± 0.10 | 0.60 ± 0.22 | 0.29 ± 0.11 | 0.42 ± 0.18 |
Tensile stiffness, Nm/g | 490 ± 130 | 750 ± 70 | 570 ± 150 | 420 ± 120 | 540 ± 140 | 700 ± 40 | 590 ± 70 | 720 ± 80 | 640 ± 70 | 690 ± 80 |
WET | ||||||||||
Solids content, % | 38.6 | 38.5 | 36.0 | 44.1 | 33.4 | 35.3 | 36.1 | 33.4 | 32.3 | 35.4 |
Tensile index, Nm/g | 0.5 ± 0.1 | 1.6 ± 0.4 | 0.4 ± 0.2 | 0.9 ± 0.4 | 0.5 ± 0.1 | 1.4 ± 0.2 | 0.9 ± 0.3 | 1.3 ± 0.3 | 0.9 ± 0.1 | 1.2 ± 0.2 |
Stretch at break, % | 1.9 ± 0.4 | 2.7 ± 0.4 | 2.1 ± 0.3 | 2.1 ± 0.4 | 1.8 ± 0.3 | 3.3 ± 0.8 | 2.4 ± 0.4 | 2.6 ± 0.5 | 2.6 ± 0.5 | 2.8 ± 0.7 |
TEA index, J/g | 0.010 ± 0.003 | 0.03 ± 0.01 | 0.009 ± 0.004 | 0.018 ± 0.007 | 0.008 ± 0.002 | 0.035 ± 0.009 | 0.018 ± 0.009 | 0.03 ± 0.01 | 0.018 ± 0.004 | 0.02 ± 0.01 |
Tensile stiffness, Nm/g | 14 ± 5 | 34 ± 10 | 13 ± 6 | 23 ± 14 | 15 ± 3 | 24 ± 5 | 21 ± 7 | 28 ± 5 | 22 ± 4 | 27 ± 3 |
Top contact angle, ° | ||||||||||
0–0.9 s | 72 ± 8 | 80 ± 3 | 81 ± 4 | 108 ± 7 | 66 ± 7 | n.m. *** | 66 ± 6 | n.m. | 51 ± 6 | n.m. |
10–11 s | 59 ± 5 | 60 ± 6 | ** | 97 ± 8 | 31 ± 6 | n.m. | 39 ± 12 | n.m. | ** | n.m. |
Bottom contact angle, ° | ||||||||||
0–0.9 s | 92 ± 6 | 76 ± 2 | 67 ± 8 | 121 ± 6 | 76 ± 14 | n.m. | 68 ± 3 | n.m. | 38 ± 8 | n.m. |
10–11 s | 74 ± 2 | 63 ± 8 | ** | 118 ± 5 | 63 ± 15 | n.m. | 48 ± 7 | n.m. | ** | n.m. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrega, M.; Hinkka, V.; Hörhammer, H.; Kataja, K.; Kenttä, E.; Ketoja, J.A.; Palmgren, R.; Salo, M.; Sundqvist-Andberg, H.; Tanaka, A. Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fibers. Materials 2022, 15, 7826. https://doi.org/10.3390/ma15217826
Borrega M, Hinkka V, Hörhammer H, Kataja K, Kenttä E, Ketoja JA, Palmgren R, Salo M, Sundqvist-Andberg H, Tanaka A. Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fibers. Materials. 2022; 15(21):7826. https://doi.org/10.3390/ma15217826
Chicago/Turabian StyleBorrega, Marc, Ville Hinkka, Hanna Hörhammer, Kirsi Kataja, Eija Kenttä, Jukka A. Ketoja, Rosa Palmgren, Minna Salo, Henna Sundqvist-Andberg, and Atsushi Tanaka. 2022. "Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fibers" Materials 15, no. 21: 7826. https://doi.org/10.3390/ma15217826
APA StyleBorrega, M., Hinkka, V., Hörhammer, H., Kataja, K., Kenttä, E., Ketoja, J. A., Palmgren, R., Salo, M., Sundqvist-Andberg, H., & Tanaka, A. (2022). Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fibers. Materials, 15(21), 7826. https://doi.org/10.3390/ma15217826