Flexural Capacity of Concrete Beams with Basalt Fiber-Reinforced Polymer Bars and Stirrups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Setup and Testing Procedure
3. Results
3.1. Failure Modes
3.2. Moment-Deflection Behavior
3.3. Strain in Concrete in Compression and Tension Zones
4. Comparison of the Calculated and Experimental Values of Flexural Capacity
- -
- the methods for the determination of the tensile strength of FRP reinforcement, often depending on environmental factors;
- -
- the reduction coefficients of the load-bearing capacity, depending on the compressive strength of the concrete;
- -
- the methods for calculating the extent of the compression zone;
- -
- the different values of the ultimate deformation of concrete.
5. Conclusions
- As expected, the six beams with BFRP bars and stirrups failed by the crushing of concrete at mid-span in the compression fibers.
- The presence of composite reinforced bars increases the deformation value due to tensile stresses. Using the FRP reinforcement resulted in improving the flexural capacity of beams, regardless of the concrete type.
- Due to the relatively low value of Young’s modulus of BFRP reinforcement, the stiffness of the beam decreases significantly after scratching. After the drawing moment is exceeded, perpendicular cracks of considerable width are formed in the beam’s central section at the tension reinforcement level. Due to the corrosion resistance of BFRP bars, the crack width is not as important as in the case of reinforced concrete structures.
- BFRP basalt bars also influenced the nature of beam failure, which did not occur suddenly, but was rather associated with the forming of many cracks and significant deflection of the element.
- The methods for designing flexural capacity are based on the equations of the equilibrium of forces and moments in the cross section, as is the case with steel members.
- During the design, the differences resulting from the different physical and mechanical properties of the BFRP reinforcement compared to the steel should be considered. For this reason, rectangular stress distribution is assumed in the compression zone.
- The analysis showed differences of approximately 20% in the flexural capacity of the beams. The differences are mainly due to the use of different reduction factors. The difference in the results would have been much more significant when determining the flexural capacity using material factors that are ignored when compared with the test results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- High, C.A.; Seliem, H.M.; El-Safty, A.R.; Rizkalla, S.H. Use of basalt fibers for concrete structures. Constr. Build. Mater. 2015, 96, 37–46. [Google Scholar] [CrossRef]
- Pilakoutas, K.; Neocleous, K.; Guadagnini, M.; Matthys, S. Design guidelines for FRP reinforced concrete structures. Proc. Inst. Civ. Eng. Struct. Build. 2011, 164, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Murad, Y.; Tarawneh, A.; Arar, F.; Al-Zu’bi, A.; Al-Ghwairi, A.; Al-Jaafreh, A.; Tarawneh, M. Flexural strength prediction for concrete beams reinforced with FRP bars using gene expression programming. Structures 2021, 33, 3163–3172. [Google Scholar] [CrossRef]
- Szmigiera, E.D.; Protchenko, K.; Urbański, M.; Garbacz, A. Mechanical properties of hybrid FRP bars and nano-hybrid FRP bars. Arch. Civ. Eng. 2019, 65, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Aydın, E.; Boru, E.; Aydın, F. Effects of FRP bar type and fiber reinforced concrete on the flexural behavior of hybrid beams. Constr. Build. Mater. 2021, 279, 122407. [Google Scholar] [CrossRef]
- Brózda, K.; Selejdak, J. Analiza nośności na zginanie belki zbrojonej prętami GFRP na podstawie amerykańskich i włoskich zaleceń projektowych. Czasopismo Inżynierii Lądowej Środowiska i Architektury 2017, 64, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-G.; Jang, C.-I.; Lee, S.-W.; Won, J.-P. Microstructural investigation of long-term degradation mechanisms in GFRP dowel bars for jointed concrete pavement. J. Appl. Polym. Sci. 2008, 108, 3128–3137. [Google Scholar] [CrossRef]
- Seręga, S.; Kotynia, R.; Lasek, K. Numerical modelling of preloaded RC beams strengthened with prestressed CFRP laminates. Eng. Struct. 2018, 176, 917–934. [Google Scholar] [CrossRef]
- Bank, L.C. Design of FRP Reinforced and Strengthened Concrete; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Krassowska, J.; Kosior-Kazberuk, M. Pręty kompozytowe BFRP jako zbrojenie w prefabrykowanych belkach betonowych. Mater. Bud. 2022, 30–32. [Google Scholar] [CrossRef]
- Tang, Y.; Jiang, T.; Wan, Y. Structural monitoring method for RC column with distributed self-sensing BFRP bars. Case Stud. Constr. Mater. 2022, 17, e01616. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, Z.; Wei, Y.; Zou, X. Compressive behavior and design method of BFRP bars constrained with a BFRP spiral with different spacings in concrete members. Eng. Struct. 2022, 268, 114757. [Google Scholar] [CrossRef]
- Pawłowski, D.; Szumigała, M. An experimental and theoretical study of deflections of BFRP RC beams. Czasopismo Techniczne. Budownictwo 2015, 112, 63–70. [Google Scholar] [CrossRef]
- Qureshi, J. A Review of Fibre Reinforced Polymer Structures. Fibers 2022, 10, 27. [Google Scholar] [CrossRef]
- Li, C.; Zhu, H.; Niu, G.; Cheng, S.; Gu, Z.; Yang, L. Flexural behavior and a new model for flexural design of concrete beams hybridly reinforced by continuous FRP bars and discrete steel fibers. Structures 2022, 38, 949–960. [Google Scholar] [CrossRef]
- Abed, F.; Alhafiz, A.R. Effect of basalt fibers on the flexural behavior of concrete beams reinforced with BFRP bars. Compos. Struct. 2019, 215, 23–34. [Google Scholar] [CrossRef]
- Kosior-Kazberuk, M.; Krassowska, J.; Vidales Barriguete, A.; Ramirez, C.P. Fracture parameters of basalt fiber reinforced concrete. Anales de Edificación 2018, 4, 52–58. [Google Scholar] [CrossRef] [Green Version]
- EN 12350-2:2019—Testing Fresh Concrete. Slump Test. Available online: https://shop.bsigroup.com/ProductDetail?pid=000000000030360058 (accessed on 20 April 2021).
- EN 12350-7:2019—TC—Tracked Changes. Testing Fresh Concrete. Air Content. Pressure Methods. Available online: https://shop.bsigroup.com/ProductDetail?pid=000000000030407441 (accessed on 20 April 2021).
- EN 12390-3:2009—Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. Available online: https://standards.iteh.ai/catalog/standards/cen/d1d94876-958b-4941-ade0-780076fc330a/en-12390-3-2009 (accessed on 20 April 2021).
- EN 12390-5:2019—Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens. Available online: https://standards.iteh.ai/catalog/standards/cen/5653c2c7-55a9-4bcb-8e13-5b1dfb0e3baf/en-12390-5-2019 (accessed on 20 April 2021).
- EN 12390-13:2013—Testing Hardened Concrete. Determination of Secant Modulus of Elasticity in Compression. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030398745 (accessed on 20 April 2021).
- ACI Committee 440. Guide Test Methods for Fiberreinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures; American Concrete Institute: Farmington Hills, MI, USA, 2004. [Google Scholar]
- Kosior-Kazberuk, M.; Wasilczyk, R. Analiza ugięć i zarysowania betonowych belek ze zbrojeniem niemetalicznym. Budownictwo i Inżynieria Środowiska 2017, 8, 173–183. [Google Scholar] [CrossRef]
- ACI Committee 440. Guide for the Design and Connstruction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars; American Concrete Institute: Farmington Hills, MI, USA, 2015. [Google Scholar]
- Fédération Internationale du Béton (FIB). Model Code for Concrete Structures 2010—Ernst-und-Sohn.de; Ernst & Sohn, a Wiley Brand: Lausanne, Switzerland, 2013; Available online: https://www.ernst-und-sohn.de/index.php?q=en/fib-model-code-for-concrete-structures-2010 (accessed on 14 March 2021).
Beam No. | Bar Diameter, mm | No. of Bars | Materials of Bars | Basalt Fibers, kg/m3 | |
---|---|---|---|---|---|
RC | A-I-WO1 | 14 | 4 | steel | 0 |
A-I-WO2 | 14 | 4 | steel | 0 | |
FRC | A-I-WB1 | 14 | 4 | steel | 8 |
A-I-WB2 | 14 | 4 | steel | 8 | |
BFRC | B-I-WB1 | 14 | 4 | basalt | 8 |
B-I-WB2 | 14 | 4 | basalt | 8 |
Mixture Proportions | Quantity |
---|---|
Cement 42.5R, kg/m3 | 320 |
Water, kg/m3 | 160 |
Sand 0.125–4 mm, kg/m3 | 732 |
Aggregate, kg/m3 | 1203 |
Fiber Content [kg/m3] | Slump | Air Content | fck | σ | ν | fctm | σ | ν | Ecm |
---|---|---|---|---|---|---|---|---|---|
mm | % | MPa | MPa | % | MPa | MPa | % | GPa | |
0 | 19 | 3.1 | 43.78 | 0.6 | 0.96 | 5.55 | 0.85 | 15.28 | 40.64 |
8 | 2 | 3.8 | 44.52 | 2.75 | 6.17 | 6.11 | 0.68 | 12.14 | 42.02 |
Beam No. | Max. Load Pult | Moment Mult | Failure Mode | Ultimate Deflection ∆alim | |||
---|---|---|---|---|---|---|---|
kN | kN | kNm | kNm | - | mm | ||
RC | A-I-W01 | 110 | 110 | 77 | 77 | F | 59.67 |
A-I-W02 | 110 | 77 | F + CC | 73.97 | |||
FRC | A-I-WB1 | 137 | 126 | 95.9 | 88.2 | F + CC | 68.04 |
A-I-WB2 | 115 | 80.5 | F + CC | 76.52 | |||
BFRP | B-I-WB1 | 110 | 97 | 58.8 | 67.9 | F | 52.21 |
B-I-WB2 | 84 | 77 | F + BR | 52.06 |
Beam No. | Load | Strain in Concrete on the Position of Longitudinal Reinforced | ||
---|---|---|---|---|
In compression ε | In tension ε | |||
[-] | [‰] | [‰] | ||
RC | A-I-W0 | 0.5 Pult | −1.050 | 1.513 |
Pult | −3.443 | 5.420 | ||
FRC | A-I-WB | 0.5 Pult | −1.153 | 1.339 |
Pult | −3.632 | 4.076 | ||
BFRP | B-I-WB | 0.5 Pult | −0.332 | 2.356 |
Pult | −1.533 | 8.838 |
Load-Bearing Capacity | RC | BFRC | |
---|---|---|---|
Mult | kNm | 82.50 | 76.50 |
MACI | kNm | 107.98 | 66.82 |
Mult/MACI | - | 1.31 | 0.87 |
Mfib | kNm | 76.97 | 52.01 |
Mult/Mfib | - | 0.93 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krassowska, J.; Piña Ramírez, C. Flexural Capacity of Concrete Beams with Basalt Fiber-Reinforced Polymer Bars and Stirrups. Materials 2022, 15, 8270. https://doi.org/10.3390/ma15228270
Krassowska J, Piña Ramírez C. Flexural Capacity of Concrete Beams with Basalt Fiber-Reinforced Polymer Bars and Stirrups. Materials. 2022; 15(22):8270. https://doi.org/10.3390/ma15228270
Chicago/Turabian StyleKrassowska, Julita, and Carolina Piña Ramírez. 2022. "Flexural Capacity of Concrete Beams with Basalt Fiber-Reinforced Polymer Bars and Stirrups" Materials 15, no. 22: 8270. https://doi.org/10.3390/ma15228270
APA StyleKrassowska, J., & Piña Ramírez, C. (2022). Flexural Capacity of Concrete Beams with Basalt Fiber-Reinforced Polymer Bars and Stirrups. Materials, 15(22), 8270. https://doi.org/10.3390/ma15228270