The Polyol Process and the Synthesis of ζ Intermetallic Compound Ag5Sn0.9
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Synthesis
2.3. Characterizations
3. Results
3.1. DTA and EDX Analysis
3.2. Structural Hypothesis for the ζ Phase
3.2.1. Review on the Structure of the Ag3Sn Phase
3.2.2. Structural Hypothesis for the ζ Phase
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manikam, V.R.; Cheong, K.Y. Die Attach Materials for High Temperature Applications: A Review. IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 457–478. [Google Scholar] [CrossRef]
- Zeng, G.; Mcdonald, S.; Nogita, K. Development of high-temperature solders: Review. Microelectron Reliab. 2012, 52, 1306–1322. [Google Scholar] [CrossRef]
- Anderson, I.E.; Choquette, S.; Reeve, K.T.; Handwerker, C. Pb-free solders and other joining materials for potential replacement of high-Pb hierarchical solders. In Proceedings of the 2018 Pan Pacific Microelectronics Symposium (Pan Pacific), Big Island, HI, USA, 5–8 February 2018; pp. 1–11. [Google Scholar]
- Morozumi, A.; Hokazono, H.; Nishimura, Y.; Mochizuki, E.; Takahashi, Y. Influence of antimony on reliability of solder joints using Sn-Sb Binary alloy for power semiconductor modules. Trans. Jpn. Inst. Electron. Packag. 2015, 8, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Osorio, W.R.; Peixoto, L.C.; Garcia, L.R.; Garcia, A.; Spinelli, J.E. The Effects of Microstructure and Ag3Sn and Cu6Sn5 Intermetallics on the Electrochemical Behavior of Sn-Ag and Sn-Cu Solder Alloys. Int. J. Electrochem. Sci. 2012, 7, 6436–6452. [Google Scholar]
- Tunthawiroon, P.; Kanlayasiri, K. Effects of Ag contents in Sn–xAg lead-free solders on microstructure, corrosion behavior and interfacial reaction with Cu substrate. Trans. Nonferrous Met. Soc. China 2019, 29, 1696–1704. [Google Scholar] [CrossRef]
- Shen, J.; Liu, Y.C.; Gao, H.X.; Wei, C.; Yang, Y.Q. Formation of Bulk Ag3Sn Intermetallic Compounds in Sn-Ag Lead-Free Solders in Solidification. J. Electron. Mater. 2005, 34, 1591–1597. [Google Scholar] [CrossRef]
- Lee, L.M.; Mohamad, A.A. Interfacial reaction of Sn−Ag−Cu lead-free solder alloy on Cu: A review. Adv. Mater. Sci. Eng. 2013, 2013, 123697. [Google Scholar] [CrossRef] [Green Version]
- Chiang, H.W.; Chang, K.; Chen, J.Y. The Effect of Ag Content on the Formation of Ag3Sn Plates in Sn-Ag-Cu Lead-Free Solder. J. Electron. Mater. 2006, 35, 2074–2080. [Google Scholar] [CrossRef]
- Wang, T.; Chen, X.; Lu, G.Q.; Lei, G.Y. Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection. J. Electron. Mater. 2007, 36, 1333–1340. [Google Scholar] [CrossRef]
- Bai, J.G.; Zhang, Z.Z.; Calata, J.N.; Lu, G.Q. Characterization of Low-Temperature Sintered Nanoscale Silver Paste. In Proceedings of the Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, Shanghai, China, 27–29 June 2005. [Google Scholar]
- Metal Properties Table. Available online: https://www.tibtech.com/conductivite (accessed on 9 May 2022).
- Schmitt, W.; Chew, L.M. Silver Sinter Paste for SiC Bonding with Improved Mechanical Properties. In Proceedings of the IEEE 67th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 30 May–2 June 2017; pp. 1560–1565. [Google Scholar]
- Masson, A.; Sabbah, W.; Riva, R.; Buttay, C.; Azzopardi, S.; Morel, H.; Planson, D.; Meuret, R. Report de puce par frittage d’argent-mise en oeuvre et analyse. In Proceedings of the Power Electronics EPF, Novi Sad, Serbia, 26–28 October 2012. [Google Scholar]
- Henaff, F.L. Contribution à L’étude, la Mise en Oeuvre et à L’évaluation D’une Solution de Report de Puce de Puissance Par Procédé de Frittage de Pâte D’argent à Haute Pression et Basse Température. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2014. [Google Scholar]
- Buttay, C. Le Packaging en Électronique de Puissance. Ph.D. Thesis, Habilitation à Diriger des Recherches, INSA, Lyon, France, 2015. [Google Scholar]
- Bai, G. Low-Temperature Sintering of Nanoscale Silver Paste for Semiconductor Device Interconnection. Ph.D Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2005. [Google Scholar]
- Lu, G.; Calata, J.N.; Lei, G.; Chen, X. Low-temperature and Pressureless Sintering Technology for High-performance and High-temperature Interconnection of Semiconductor Devices. In Proceedings of the 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, EuroSime 2007, London, UK, 16–18 April 2007. [Google Scholar]
- Li, J.; Agyakwa, P.; Johnson, C. Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment. J. Electron. Mater. 2014, 43, 983–985. [Google Scholar] [CrossRef] [Green Version]
- Suganuma, K.; Kim, S.J.; Kim, K.S. High-Temperature Lead-Free Solders: Properties and Possibilities. JOM 2009, 61, 64–71. [Google Scholar] [CrossRef]
- Mahayri, R.; Mercone, S.; Giovannelli, F.; Tan, K.L.; Morelle, J.M.; Jouini, N.; Schoenstein, F. Microstructure effects on thermal and electrical conductivities in the intermetallic compound Ag3Sn-based materials, sintered by SPS in view of die-attachment applications. Eur. Phys. J. Spec. Top. 2022, 1–6. [Google Scholar] [CrossRef]
- Canaud, P.; Mahayri, R.; Schoenstein, F.; Gautron, E.; Tan, K.L.; Chauveau, T.; Morelle, J.M.; Maroteaux, F.; Jouini, N. Synthesis of Ag3Sn Submicrometer Particles via an Adapted Polyol Process in View of Their Use as Die-Attach Material in Power Modules. J. Electron. Mater. 2019, 48, 4637–4646. [Google Scholar] [CrossRef]
- Fievet, F.; Ammar, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 2018, 47, 5187–5233. [Google Scholar] [CrossRef] [PubMed]
- Brayner, R.; Fievet, F.; Coradin, T. Nanomaterials: A Danger or a Promise? Springer: Berlin, Germany, 2013. [Google Scholar]
- Ammar, S.; Fievet, F. Polyol Synthesis: A Versatile Wet-Chemistry Route for the Design and Production of Functional Inorganic Nanoparticles. J. Nanomater. 2020, 10, 1217. [Google Scholar] [CrossRef]
- Fievet, F.; Lagier, J.P.; Blin, B. Homogeneous and Heterogeneous Nucleations in the Polyol Process for the Preparation of Micron and Submicron Size Metal Particles. Solid State Ion. 1989, 32–33, 198–205. [Google Scholar] [CrossRef]
- Jezequel, D.; Guenot, J.; Jouini, N.; Fievet, F. Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics. Mater. Res. 1995, 10, 77–83. [Google Scholar] [CrossRef]
- Poul, L.; Jouini, N.; Fievet, F. Layered Hydroxide Metal Acetates (Metal = Zinc, Cobalt and Nickel): Elaboration via Hydrolysis in Polyol Medium and Comparative Study. Chem. Mater. 2000, 12, 3123–3132. [Google Scholar] [CrossRef]
- Benchikhi, M. Elaboration par Chimie Douce et Caractérisations de Semi-Conducteurs Nanométriques à Base de Sulfures (de type CuInS2) et D’oxydes (de Type CuMoO4). Ph.D. Thesis, Université de Toulouse, Toulouse, France, 2012. [Google Scholar]
- Fievet, F.; Lagier, J.P.; Beaudoin, B.; Figlarz, M. Reactivity of solids. Mater. Sci. Monogr. 1985, 28A, 555–556. [Google Scholar]
- Wang, Z.L. ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. R. 2009, R64, 33–71. [Google Scholar] [CrossRef]
- Figlarz, M.; Fievet, F.; Lagier, J. Procédé de Réduction de Composés Métalliques par les Polyols, et Poudres Métalliques Obtenues Par ce Procédé. Europe Brevet 0113281 B1, 20 December 1983. [Google Scholar]
- Rossi, P.J.; Zotov, N.; Mittemeijer, E.J. Redetermination of the crystal structure of the Ag3Sn intermetallic compound. Z. Kristallogr. 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Ellner, M.; Mittemeijer, E.J. In situ and ex situ investigation of the displacive phase transformations Ag3Sn (h) to Ag3Sn (l) and Ag3Sb (h) to Ag3Sb (l). Z. Kristallogr. 2003, 1218, 675–682. [Google Scholar] [CrossRef]
- Viau, G.; Toneguzzo, P.; Pierrard, A.; Acher, O.; Fiévet-Vincent, F.; Fiévet, F. Heterogeneous nucleation and growth of metal nanoparticles in polyols. Scr. Mater. 2001, 44, 2263–2267. [Google Scholar] [CrossRef]
- Dakhlaoui, A.; Jendoubi, M.; Smiri, L.S.; Kanaev, A.; Jouini, N. Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology. J. Cryst. Growth 2009, 311, 3989–3996. [Google Scholar] [CrossRef]
- King, H.W.; Massalski, T.B. Lattice spacing relationships and the electronic structure of H.C.P. ζ phases based on silver. Philos. Mag. Lett. 1961, 6, 669–682. [Google Scholar] [CrossRef]
- Gollas, B.; Albering, J.; Schmut, K.; Pointner, V.; Herber, R.; Etzkorn, J. Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low-temperature isothermal diffusion soldering. Intermetallics 2008, 16, 962–968. [Google Scholar] [CrossRef]
- Fairhurst, C.; Cohen, J.B. The Crystal Structures of Two Compounds Found in Dental Amalgam: Ag2Hg3 and Ag3Sn. Acta Cryst. 1972, 28, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.H.; Jung, I.; Kim, N.R.; Lee, H.M. Synthesis and characterization of highly conductive Sn–Ag bimetallic nanoparticles for printed electronics. J. Nanopart. Res. 2012, 14, 782. [Google Scholar] [CrossRef]
- Horo, J.; Harne, P.G.; Nayak, B.B.; Vitta, S. Low temperature coefficient of resistivity Ag–Cd and Ag-Sn alloys—Structure and transport. Mater. Sci. Eng. 2004, 107, 53–57. [Google Scholar] [CrossRef]
- Bao, G.; Fan, Q.; Ge, D.; Sun, M.; Guo, H.; Xia, D.; Liu, Y.; Liu, J.; Wub, S.; He, B.; et al. In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. Acta Biomater. 2019, 97, 623–636. [Google Scholar] [CrossRef]
- Mizutani, U. The hume-rothery rules for structurally complex alloy phases. In Surface Properties and Engineering of Complex Intermetallics; World Scientific: Singapore, 2011. [Google Scholar]
- Massalski, T.B.; King, H.W. Alloy phases of the noble metals. Prog. Mater. Sci. 1963, 10, 3–78. [Google Scholar] [CrossRef]
- Novgorodova, M.I.; Gorshkov, A.I.; Mokhov, A.V. Native silver and its new structural modifications. Int. Geol. Rev. 1981, 23, 485–494. [Google Scholar] [CrossRef]
Steps | Materials |
---|---|
Solvent | Ethylene Glycol |
Surfactant (added at 50 °C) | PVP58000 |
Silver precursor and ratio (added at 70 °C) | AgNO3; m(PVP/AgNO3) = 1 |
t160 °C | 5 min |
Tin precursor and ratio | SnCl2; n(Ag/Sn) = 1.14 |
t160 °C | 5 min |
Reducing agent of tin | NaBH4; n (NaBH4/Sn) = 19.6With continuous mechanical stirring and controlled addition to 0.25 g/15 s |
t180 °C | 1 h |
Cooling | Water quenching (≤5 min) |
Centrifugation | 12,000 tr/min |
Drying of the powder | At 70 °C for 12 h |
Analysis of Spectrum: Spectra from Area 1 | |||||||
Z | Element | Family | Atomic Fraction (%) | Atomic Error (%) | Mass Fraction (%) | Mass Error (%) | Fit Error (%) |
47 | Ag | L | 84.90 | 8.20 | 83.63 | 5.85 | 0.07 |
50 | Sn | L | 15.10 | 2.09 | 16.37 | 1.99 | 0.10 |
Analysis of Spectrum: Spectra from Area 2 | |||||||
Z | Element | Family | Atomic Fraction (%) | Atomic Error (%) | Mass Fraction (%) | Mass Error (%) | Fit Error (%) |
47 | Ag | L | 86.22 | 8.36 | 85.04 | 5.97 | 0.33 |
50 | Sn | L | 13.78 | 1.92 | 14.96 | 1.83 | 1.45 |
Phase Variety | Atom | Quantity | Site | x | y | z | Biso | Occ |
---|---|---|---|---|---|---|---|---|
Orthorhombic and hexagonal varieties | Ag | 4 | 4e | 0.00477 (9) | 1/4 | 0.66865 (5) | 0.6 | 1 |
Ag | 2 | 2b | 1/4 | 3/4 | 0.84618 (3) | 1 | ||
Sn | 2 | 2a | 1/4 | 1/4 | 0.18709 (3) | 1 − x (0.6) | ||
Ag | 2 | 2a | 1/4 | 1/4 | 0.18705 (2) | x (= 0.4) | ||
Ag | 2 | 2c | 1/3 | 2/3 | 1/4 | 0.85 | ||
Sn | 2 | 2c | 1/3 | 2/3 | 1/4 | 0.15 |
Hypothesis | Symmetry | Space Group | Cell Parameters (Å) | % Phase | Sigma | Rwp | Rexp |
---|---|---|---|---|---|---|---|
(i) | Hexagonal | P63/mmc | a = 2.9550 (1) c = 4.7906 (1) | 100 | 1.152 | 11.678 | 10.139 |
(ii) | Orthorhombic | Pmmn | a = 5.9182 (7) b = 4.7889 (1) c = 5.1612 (5) | 100 | 1.133 | 11.481 | 10.127 |
(iii) | Hexagonal | P63/mmc | a = 2.9530 (3) c = 4.7906 (2) | 59.9 | 1.07 | 10.855 | 10.112 |
Orthorhombic | Pmmn | a = 5.9271 (7) b = 4.7971 (4) c = 5.1823 (6) | 40.1 |
Phase (Symmetry) | Space Group | a (Å) | b (Å) | c (Å) | e/a | Reference | |
---|---|---|---|---|---|---|---|
Ag3Sn (Orthorhombic) | Pmmn | 4.78291 (2) | 5.98854 (2) | 5.15686 (2) | 1.6019 | 1.75 | [33] |
Pmmn | 4.785 (1) | 5.988 (1) | 5.159 (1) | 1.6023 | [34] | ||
Pmmn | 4.7802 (4) | 5.968 (9) | 5.1843 (9) | 1.5995 | [39] | ||
Pmmn | 4.7882 (1) | 6.0009 (2) | 5.1699 (4) | 1.5999 | [22] | ||
Ag3Sn (Hexagonal) | P63/mmc | 2.9863 (8) | 4.7840 (2) | 1.6019 | 1.75 | [34] | |
P63/mmc | 2.9755 (6) | 4.7742 (7) | 1.6045 | [22] | |||
Ag4Sn (Hexagonal) | P63/mmc | 2.9658 | 4.7824 | 1.6131 | 1.60 | [37] | |
Ag5Sn0.9 (Hexagonal) | P63/mmc | 2.9530 (3) | 4.7906 (5) | 1.6222 | 1.45 | This work | |
Ag5Sn0.9 (Orthorhombic) | Pmmn | 4.7971 (4) | 5.9271 (7) | 5.1823 (6) | 1.6109 | 1.45 | This work |
Ag (Hexagonal) | P63/mmc | 2.93 (1) | 4.79 (1) | 1.633 | 1.00 | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahayri, R.; Bousnina, M.A.; Mercone, S.; Tan, K.-L.; Morelle, J.-M.; Schoenstein, F.; Jouini, N. The Polyol Process and the Synthesis of ζ Intermetallic Compound Ag5Sn0.9. Materials 2022, 15, 8276. https://doi.org/10.3390/ma15228276
Mahayri R, Bousnina MA, Mercone S, Tan K-L, Morelle J-M, Schoenstein F, Jouini N. The Polyol Process and the Synthesis of ζ Intermetallic Compound Ag5Sn0.9. Materials. 2022; 15(22):8276. https://doi.org/10.3390/ma15228276
Chicago/Turabian StyleMahayri, Roland, Mohammed Ali Bousnina, Silvana Mercone, Ky-Lim Tan, Jean-Michel Morelle, Frédéric Schoenstein, and Noureddine Jouini. 2022. "The Polyol Process and the Synthesis of ζ Intermetallic Compound Ag5Sn0.9" Materials 15, no. 22: 8276. https://doi.org/10.3390/ma15228276
APA StyleMahayri, R., Bousnina, M. A., Mercone, S., Tan, K. -L., Morelle, J. -M., Schoenstein, F., & Jouini, N. (2022). The Polyol Process and the Synthesis of ζ Intermetallic Compound Ag5Sn0.9. Materials, 15(22), 8276. https://doi.org/10.3390/ma15228276