Molten Salt Synthesis of Intermetallic Compound TiNi Nanopowder Passivated by TiOx Shell Prepared from NiTiO3 for Catalytic Hydrogenation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis of TiNi Nanopowder from NiTiO3
3.2. Catalytic Hydrogenation of 4-Nitrophenol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bansiddhi, A.; Sargeant, T.D.; Stupp, S.I.; Dunand, D.C. Porous NiTi for bone implants: A review. Acta Biomater. 2008, 4, 773–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotino, G.; Grande, N.M.; Cordaro, M.; Testarelli, L.; Gambarini, G. A Review of Cyclic Fatigue Testing of Nickel-Titanium Rotary Instruments. J. Endod. 2009, 35, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhou, H.; Zheng, Y.; Peng, B.; Haapasalo, M. Current Challenges and Concepts of the Thermomechanical Treatment of Nickel-Titanium Instruments. J. Endod. 2013, 39, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Raj, T.; Jangra, K.K. Applications of Nickel-Titanium Alloy. J. Eng. Technol. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Zhang, N.; Khosrovabadi, P.B.; Lindenhovius, J.H.; Kolster, B.H. TiNi shape memory alloys prepared by normal sintering. Mater. Sci. Eng. A 1992, 150, 263–270. [Google Scholar] [CrossRef]
- Hey, J.C.; Jardine, A.P. Shape memory TiNi synthesis from elemental powders. Mater. Sci. Eng. A 1994, 188, 291–300. [Google Scholar] [CrossRef]
- Inoue, H.; Ishio, M.; Takasugi, T. Texture of TiNi shape memory alloy sheets produced by roll-bonding and solid phase reaction from elementary, metals. Acta Mater. 2003, 51, 6373–6383. [Google Scholar] [CrossRef]
- Zhu, S.L.; Yang, X.J.; Hu, F.; Deng, S.H.; Cui, Z.D. Processing of porous TiNi shape memory alloy from elemental powders by Ar-sintering. Mater. Lett. 2004, 58, 2369–2373. [Google Scholar] [CrossRef]
- Ergin, N.; Ozdemir, O. An Investigation on TiNi Intermetallic Produced by Electric Current Activated Sintering. Acta Phys. Pol. 2013, 123, 248–249. [Google Scholar] [CrossRef]
- Barbat, N.; Zangeneh-Madar, K. Fabrication and characterization of NiTi shape memory alloy synthesized by Ni electroless plating of titanium powder. Adv. Powder Technol. 2018, 29, 1005–1013. [Google Scholar] [CrossRef]
- Li, B.Y.; Rong, L.J.; Li, Y.Y.; Gjunter, V.E. Synthesis of porous Ni–Ti shape-memory alloys by self-propagating high-temperature synthesis: Reaction mechanism and anisotropy in pore structure. Acta Mater. 2000, 48, 3895–3904. [Google Scholar] [CrossRef]
- Yeh, C.L.; Sung, W.Y. Synthesis of NiTi intermetallics by self-propagating combustion. J. Alloys Compd. 2004, 376, 79–88. [Google Scholar] [CrossRef]
- Khodorenko, V.N.; Guenther, V.E.; Soldatova, M.I. Influence of heat treatment on shape memory effect in porous titanium nickel synthesized by the SHS process. Russ. Phys. J. 2011, 53, 1024–1034. [Google Scholar] [CrossRef]
- Bassani, P.; Panseri, S.; Ruffini, A.; Montesi, M.; Ghetti, M.; Zanotti, C.; Tampieri, A.; Tuissi, A. Porous NiTi shape memory alloys produced by SHS: Microstructure and biocompatibility in comparison with Ti2Ni and TiNi3. J. Mater. Sci. Mater. Med. 2014, 25, 2277–2285. [Google Scholar] [CrossRef] [PubMed]
- Yasenchuk, Y.F.; Artyukhova, N.V.; Novikov, V.A.; Gyunter, V.E. Participation of Gases in the Surface Formation during Self-Propagating High-Temperature Synthesis of Porous Nickel Titanium. Tech. Phys. Lett. 2014, 40, 697–700. [Google Scholar] [CrossRef]
- Novák, P.; Veselý, T.; Marek, I.; Dvořák, P.; Vojtěch, V.; Salvetr, P.; Karlík, M.; Haušild, P.; Kopeček, J. Effect of Particle Size of Titanium and Nickel on the Synthesis of NiTi by TE-SHS. Metall. Mater. Trans. B 2016, 47, 932–938. [Google Scholar] [CrossRef]
- Gunther, V.; Yasenchuk, Y.; Chekalkin, T.; Marchenko, E.; Gunther, S.; Baigonakova, G.; Hodorenko, V.; Kang, J.; Weiss, S.; Obrosov, A. Formation of pores and amorphous-nanocrystalline phases in porous TiNi alloys made by self-propagating high-temperature synthesis (SHS). Adv. Powder Technol. 2019, 30, 673–680. [Google Scholar] [CrossRef]
- Li, Y.; Rong, L.; Li, Y. Pore characteristics of porous NiTi alloy fabricated by combustion synthesis. J. Alloys Compd. 2001, 325, 259–262. [Google Scholar] [CrossRef]
- Chu, C.L.; Chung, C.Y.; Lin, P.H.; Wang, S.D. Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis. Mater. Sci. Eng. A 2004, 366, 114–119. [Google Scholar] [CrossRef]
- He, J.L.; Won, K.W.; Chang, J.T. TiNi thin films prepared by cathodic arc plasma ion plating. Thin Solid Film. 2000, 359, 46–54. [Google Scholar] [CrossRef]
- Gao, F.; Wang, H.M. Dry sliding wear property of a laser melting/deposited Ti2Ni/TiNi intermetallic alloy. Intermetallics 2008, 16, 202–208. [Google Scholar] [CrossRef]
- Wei, C.; Xue, F.; Jiehe, S. Preparation of multi-walled carbon nanotube-reinforced TiNi matrix composites from elemental powders by spark plasma sintering. Rare Metals 2012, 31, 48–50. [Google Scholar]
- Shi, Q.; Zhang, Y.; Tan, C.; Mao, X.; Khanlari, K.; Liu, X. Preparation of Ni–Ti composite powder using radio frequency plasma spheroidization and its laser powder bed fusion densification. Intermetallics 2021, 136, 107273. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Yamaoka, S.; Yamaguchi, S.; Hanada, N.; Tada, S.; Kikuchi, R. Low-temperature chemical synthesis of intermetallic TiFe nanoparticles for hydrogen absorption. Int. J. Hydrog. Energy 2021, 46, 22611–22617. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Teah, H.Y.; Hanada, N. Chemical synthesis of unique intermetallic TiFe nanostructures originating from the morphology of oxide precursors. Nanoscale Adv. 2021, 3, 5284–5291. [Google Scholar] [CrossRef] [PubMed]
- Itahara, H.; Simanullang, W.F.; Takahashi, N.; Kosaka, S.; Furukawa, S. Na-Melt Synthesis of Fine Ni3Si Powders as a Hydrogenation Catalyst. Inorg. Chem. 2019, 58, 5406–5409. [Google Scholar] [CrossRef]
- Fouilloux, P. The nature of raney nickel, its adsorbed hydrogen and its catalytic activity for hydrogenation reactions (review). Appl. Catal. 1983, 8, 1–42. [Google Scholar] [CrossRef]
- Alonso, F.; Riente, P.; Yus, M. Nickel nanoparticles in hydrogen transfer reactions. Acc. Chem. Res. 2011, 44, 379–391. [Google Scholar] [CrossRef]
- De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhang, J.; Bowman, R.C.; Fang, Z.Z. Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties. Inorganics 2021, 9, 36. [Google Scholar] [CrossRef]
- Khan, M.M.; Saadah, N.H.; Khan, M.E.; Harunsani, M.H.; Tan, A.L.; Cho, M.H. Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Mater. Sci. Semicond. Process 2019, 91, 194–200. [Google Scholar] [CrossRef]
- Sharwani, A.A.; Narayanan, K.B.; Khan, M.E.; Han, S.S. Photocatalytic degradation activity of goji berry extract synthesized silver-loaded mesoporous zinc oxide (Ag@ZnO) nanocomposites under simulated solar light irradiation. Sci. Rep. 2022, 12, 10017. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y. Synthesis of Porous Ni3Al Intermetallic Nano-compounds in a Molten LiCl with Assistance of CaH2 as a Structure-controlling Agent. Chem. Lett. 2019, 48, 1496–1499. [Google Scholar] [CrossRef]
- Garay, J.E.; Anselmi-Tamburini, U.; Munir, Z.A. Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater. 2003, 51, 4487–4495. [Google Scholar] [CrossRef]
- Peng, H.; Xie, Y.; Xie, Z.; Wu, Y.; Zhu, W.; Liang, S.; Wang, L. Large-scale and facile synthesis of a porous high entropy alloy CrMnFeCoNi as an efficient catalyst. J. Mater. Chem. A 2020, 8, 18318–18326. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kanasaki, R.; Nozaki, T.; Shoji, R.; Sato, K. Improving Effect of MnO2 Addition on TiO2-Photocatalytic Removal of Lead Ion from Water. J. Water Environ. Technol. 2017, 15, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Devi, T.G.; Kannan, M.P. X-ray Diffraction (XRD) Studies on the Chemical States of Some Metal Species in Cellulosic Chars and the Ellingham Diagrams. Energy Fuels 2007, 21, 596–601. [Google Scholar] [CrossRef]
- Hanawa, T. A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontal Implant Sci. 2011, 41, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Grosvenor, A.P.; Biesinger, M.C.; Smart RS, C.; McIntyre, N.S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779. [Google Scholar] [CrossRef]
- Zhao, K.; Qi, J.; Zhao, S.; Tang, H.; Yin, H.; Zong, L.; Chang, L.; Gao, Y.; Yu, R.; Tang, Z. Multiple Au cores in CeO2 hollow spheres for the superior catalytic reduction of p-nitrophenol. Chin. J. Catal. 2015, 36, 261–267. [Google Scholar] [CrossRef]
- You, F.; Wan, J.; Qi, J.; Mao, D.; Yang, N.; Zhang, Q.; Gu, L.; Wang, D. Lattice Distortion in Hollow Multi-Shelled Structures for Efficient Visible-Light CO2 Reduction with a SnS2/SnO2 Junction. Angew. Chem. Int. Ed. 2020, 59, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qi, J.; Yang, N.; Yu, R.; Wang, D. Core–shell nano/microstructures for heterogeneous tandem catalysis. Mater. Chem. Front. 2021, 5, 1126–1139. [Google Scholar] [CrossRef]
- Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C 2010, 114, 8814. [Google Scholar] [CrossRef]
- Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord. Chem. Rev. 2015, 287, 114. [Google Scholar] [CrossRef]
- Li, H.; Liao, J.; Du, Y.; You, T.; Liao, W.; Wen, L. Magnetic-field-induced deposition to fabricate multifunctional nanostructured Co, Ni, and CoNi alloy films as catalysts, ferromagnetic and superhydrophobic materials. Chem. Commun. 2013, 49, 1768–1770. [Google Scholar] [CrossRef]
- Ajmal, M.; Siddiq, M.; Al-Lohedan, H.; Sahiner, N. Highly versatile p(MAc)–M (M: Cu, Co, Ni) microgel composite catalyst for individual and simultaneous catalytic reduction of nitro compounds and dyes. RSC Adv. 2014, 4, 59562–59570. [Google Scholar] [CrossRef]
- Qiu, H.; Qiu, F.; Han, X.; Li, J.; Yang, J. Microwave-irradiated preparation of reduced graphene oxide-Ninanostructures and their enhanced performance for catalyticreduction of 4-nitrophenol. Appl. Surf. Sci. 2017, 407, 509–517. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Shang, Y.; Zhang, Y.; Lou, Q.; Li, B.; Xu, J. Well dispersive Ni nanoparticles embedded in core-shell supports as efficient catalysts for 4-nitrophenol reduction. J. Nanopart. Res. 2019, 21, 120. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Suzuki, D.; Yokoyama, S.; Shoji, R. Molten salt synthesis of high-entropy alloy AlCoCrFeNiV nanoparticles for the catalytic hydrogenation of p-nitrophenol by NaBH4. Int. J. Hydrog. Energy 2022, 47, 3722–3732. [Google Scholar] [CrossRef]
Sample | Crystalline Size [nm] | BET S.A. [m2/g] | Elemental Molar Ratio [mol%] | |||
---|---|---|---|---|---|---|
Method | Ti | Ni | O | |||
TiNi | 72.9 | 6.0 | XPS | 23.6 | 1.1 | 75.2 |
24.3 | 1.0 | 74.7 | ||||
24.7 | 2.0 | 73.3 | ||||
SEM-EDX | 40.4 | 42.8 | 16.8 | |||
TEM-EDX | 49.9 | 47.2 | 2.9 | |||
49.9 | 44.4 | 5.7 |
Sample | Temp. [°C] | Reaction Conditions | k [min−1] | Ref. |
---|---|---|---|---|
TiNi | 50 | 4-NP (1.6 mM) NaBH4 (47 mM) 10 mg-cat/9 mL | 0.14–0.31 | This study |
Ni film | 25 | 4-NP (0.1 mM) NaBH4 (10 mM) 15 cm2-cat/16 mL | 0.09 | [45] |
Co50Ni50 film | 0.15 | |||
Co25Ni75 film | 0.14 | |||
p(MAc)-Ni | 30 | 4-NP (10 mM) NaBH4 (400 mM) 5 mg-cat(Ni)/50 mL | 0.75 | [46] |
Ni-RGO | R.T. | 4-NP (0.1 mM) NaBH4 (30 mM) 10 mg-cat/104 mL | 0.07 | [47] |
Ni NP | 0.02 | |||
SiO2@C/Ni | R.T. | 4-NP (0.2 mM) NaBH4 (65 mM) 3 mg-cat/3.1 mL | 2.19–3.06 | [48] |
AlCoCrFeNiV | 53 | 4-NP (1.6 mM) NaBH4 (47 mM) 10 mg-cat/9 mL | 0.05 | [49] |
CrMnFeCoNi | 50 | 4-NP (0.16 mM) NaBH4 (60 mM) 10 mg-cat/9 mL | 0.11 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, Y.; Yokoyama, S.; Shoji, R. Molten Salt Synthesis of Intermetallic Compound TiNi Nanopowder Passivated by TiOx Shell Prepared from NiTiO3 for Catalytic Hydrogenation. Materials 2022, 15, 8536. https://doi.org/10.3390/ma15238536
Kobayashi Y, Yokoyama S, Shoji R. Molten Salt Synthesis of Intermetallic Compound TiNi Nanopowder Passivated by TiOx Shell Prepared from NiTiO3 for Catalytic Hydrogenation. Materials. 2022; 15(23):8536. https://doi.org/10.3390/ma15238536
Chicago/Turabian StyleKobayashi, Yasukazu, Shota Yokoyama, and Ryo Shoji. 2022. "Molten Salt Synthesis of Intermetallic Compound TiNi Nanopowder Passivated by TiOx Shell Prepared from NiTiO3 for Catalytic Hydrogenation" Materials 15, no. 23: 8536. https://doi.org/10.3390/ma15238536
APA StyleKobayashi, Y., Yokoyama, S., & Shoji, R. (2022). Molten Salt Synthesis of Intermetallic Compound TiNi Nanopowder Passivated by TiOx Shell Prepared from NiTiO3 for Catalytic Hydrogenation. Materials, 15(23), 8536. https://doi.org/10.3390/ma15238536