Development of the Composite Thermoluminescent Detectors Based on the Single Crystalline Films and Crystals of Perovskite Compounds
Abstract
:1. Introduction
2. Materials and Methods
3. Optical Properties
3.1. CL Spectra of SCF and Substrates
3.2. Thermoluminescence
3.2.1. Yttrium Perovskites
3.2.2. Gadolinium Perovskites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Pagonis, V. (Eds.) Advances in Physics and Applications of Optically and Thermally Stimulated Luminescence; World Scientific, WSPC (Europe): Singapore, 2019; pp. 285–317. [Google Scholar] [CrossRef]
- Yukihara, E.; Kron, T. Thermoluminescence dosimetry (TLD) in medicine: Five ‘w’s and one how. Radiat. Prot. Dosim. 2020, 192, 139–151. [Google Scholar] [CrossRef]
- Horowitz, Y.S. Thermoluminescence dosimetry: State-of-the-art and frontiers of future research. Radiat. Meas. 2014, 71, 2–7. [Google Scholar] [CrossRef]
- Bilski, P. Lithium Fluoride: From LiF:Mg,Ti to LiF:Mg,Cu,P. Radiat. Prot. Dosim. 2002, 100, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Bilski, P.; Olko, P.; Burgkhardt, B.; Piesch, E. Ultra-thin LiF:Mg,Cu,P detectors for beta dosimetry. Radiat. Meas. 1995, 24, 439–443. [Google Scholar] [CrossRef]
- Grassi, E.; Sghedoni, R.; Piccagli, V.; Fioroni, F.; Borasi, G.; Iori, M. Comparison of two different types of LiF:Mg,Cu,P thermoluminescent dosimeters for detection of beta rays (beta-TLDs) from Sr-90/Y-90, K-85 and Pm-147 sources. Health Phys. 2011, 100, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Bilski, P.; Budzanowski, M.; Olko, P.; Christensen, P. Properties of Different Thin-Layer LiF:Mg,Cu,P TL Detectors for Beta Dosimetry. Radiat. Prot. Dosim. 1996, 66, 101–104. [Google Scholar] [CrossRef]
- Bueno, M.; Carrasco, P.; Jornet, N.; Muñoz-Montplet, C.; Duch, M.A. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities. Med. Phys. 2014, 41, 081710. [Google Scholar] [CrossRef]
- Ksu, H.G.; Bulur, E.; Wahl, W. Beta Dosimetry Using Thin Layer a-Al2O3:C TL Detectors. Radiat. Prot. Dosim. 1999, 84, 451–455. [Google Scholar] [CrossRef]
- Qu, S.; Wei, J.; Wang, Q.; Li, Y.; Jin, X.; Chaib, L. Comparative study of TSL and OSL properties of LSO and LSO: Ce single crystals and single crystalline films. Radiat. Meas. 2013, 56, 196–199. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Syrotych, Y.; Mares JANikl, M.; Sidletskiy, O.; Bilski, P.; Yoshikawa, A.Y.; Yu, Z. Composite detectors based on single crystalline films and single crystals of garnet compounds. Materials 2022, 15, 1249. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Zorenko, Y.; Gieszczyk, W.; Mrozik, A.; Bilski, P. Composite thermolumi-nescent detectors based on the Ce3+ doped LuAG/YAG and YAG/LuAG epitaxial structures. Radiat. Meas. 2019, 128, 106124. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Mrozik, A.; Gorbenko, V.; Zorenko, T.; Bilski, P.; Fedorov, A.; Zorenko, Y. LPE growth of composite thermoluminescent detectors based on the Lu3−xGdxAl5O12:Ce single crystalline films and YAG:Ce crystals. Crystals 2020, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Sidletskiy, O.; Gerasymov, I.; Fedorov, A.; Yoshikawa, A.; Mares, J.A.; Nikl, M.; Zorenko, Y. Development of Composite Scintillators Based on Single Crystalline Films and Crystals of Ce3+-Doped (Lu,Gd)3(Al,Ga)5O12Mixed Garnet Compounds. Cryst. Growth Des. 2018, 18, 1834–1842. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Paprocki, K.; Sidletskiy, O.; Fedorov, A.; Kucerkova, R.; Mares, J.A.; Nikl, M.; Zorenko, Y. Epitaxial growth of composite scintillators based on Tb3Al5O12: Ce single crystalline films and Gd3Al2.5Ga2.5O12: Ce crystal substrates. CrystEngComm 2018, 20, 3994–4002. [Google Scholar] [CrossRef]
- Zorenko, Y.; Gorbenko, V.; Zorenko, T.; Voznyak, T.; Riva, F.; Douissard, P.A.; Martin, T.; Fedorov, A.; Suchocki, A.; Zhy-dachevskii, Y. Growth and luminescent properties of single crystalline films of Ce3+ doped Pr1-xLuxAlO3 and Gd1-xLuxAlO3 perovskites. J. Cryst. Growth 2017, 457, 220–226. [Google Scholar] [CrossRef]
- Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Sidletskiy, O.; Grinyov, B.; Nikl, M.; Mares, J.; Martin, T.; Douissard, P.-A. Single Crystalline Film Scintillators Based on the Orthosilicate, Perovskite and Garnet Compounds. IEEE Trans. Nucl. Sci. 2012, 59, 2260–2268. [Google Scholar] [CrossRef]
- Gieszczyk, W.; Bilski, P.; Kłosowski, M.; Mrozik, A.; Zorenko, Y.; Zorenko, T.; Paprocki, K. Luminescent properties of undoped and Ce3+ doped crystals in Y2O3 Lu2O3 Al2O3 triple oxide system grown by micro-pulling-down method. Opt. Mater. 2019, 89, 408–413. [Google Scholar] [CrossRef]
- Gieszczyk, W.; Bilski, P.; Kłosowski, M.; Mrozik, A.; Zorenko, T.; Witkiewicz, S.; Zorenko, Y. Luminescent properties of Tb and Eu activated AxB1-xAlO3 (A = Y, Lu, Gd; B = Lu; x = 0, 0.5, 1) mixed oxides crystals prepared by micro-pulling-down method. Radiat. Meas. 2019, 126, 106140. [Google Scholar] [CrossRef]
- Nakanishi, K.; Yamamoto, S.; Kamada, K.; Yoshikawa, A. Performance evaluation of YAlO3 scintillator plates with different Ce concentrations. Appl. Radiat. Isot. 2020, 168, 109483. [Google Scholar] [CrossRef]
- Piskunov, S.; Gopejenko, A.; Pankratov, V.; Isakoviča, I.; Ma, C.-G.; Brik, M.G.; Piasecki, M.; Popov, A.I. First Principles Calculations of Atomic and Electronic Structure of TiAl3+- and TiAl2+-Doped YAlO3. Materials 2021, 14, 5589. [Google Scholar] [CrossRef]
- Zhydachevskii, Y.; Durygin, A.; Suchocki, A.; Matkovskii, A.; Sugak, D.; Bilski, P.; Warchol, S. Mn-doped YAlO3 crystal: A new potential TLD phosphor. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2005, 227, 545–550. [Google Scholar] [CrossRef]
- Zhydachevskii, Y.; Suchocki, A.; Berkowski, M.; Zakharko, Y. Optically stimulated luminescence of YAlO3:Mn2+ for radiation dosimetry. Radiat. Meas. 2007, 42, 625–627. [Google Scholar] [CrossRef]
- Zhydachevskii, Y.; Suchocki, A.; Berkowski, M.; Bilski, P.; Warchol, S. Characterization of YAlO3:Mn2+ thermoluminescent detectors. Radiat. Meas. 2010, 45, 516–518. [Google Scholar] [CrossRef]
- Zhydachevskii, Y.; Kamińska, I.; Fronc, K.; Reszka, A.; Paszkowicz, W.; Warchol, S.; Berkowski, M.; Elbaum, D.; Suchocki, A. Thermoluminescent properties of Mn-doped YAP synthesized by the solution combustion method. Opt. Mater. 2014, 37, 125–131. [Google Scholar] [CrossRef]
- Zhydachevskii, Y.; Kamińska, I.; Berkowski, M.; Twardak, A.; Bilski, P.; Ubizskii, S.; Suchocki, A. Some features of YA-lO3: Mn-based crystalline and ceramic TL detectors. In Proceedings of the International Conference on Oxide Materials for Electronic Engineering OMEE, Lviv, Ukraine, 26–30 May 2014; pp. 261–262. [Google Scholar]
- Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Kukliński, B.; Grinberg, M.; Bilski, P.; Gieszczyk, W.; Twardak, A.; Mandowski, A.; Mandowska, E.; et al. Luminescent properties of YAlO3: Mn single crystalline films. Opt. Mater. 2012, 34, 1979–1983. [Google Scholar] [CrossRef]
- Olko, P.; Czopyk, Ł.; Kłosowski, M.; Waligórski, M.P. Thermoluminescence dosimetry using TL-readers equipped with CCD cameras. Radiat. Meas. 2008, 43, 864–869. [Google Scholar] [CrossRef]
- Puchalska, M.; Bilski, P. GlowFit- a new tool for thermoluminescence glow-curve deconvolution. Radiat. Meas. 2006, 41, 659–664. [Google Scholar] [CrossRef]
- Budzanowski, M.; Olko, P.; Marczewska, B.; Czopyk, Ł.; Słapa, M.; Straś, W.; Traczyk, M.; Talejko, M. Dose distribution around a needle-like anode X-ray tube: Dye-film vs. planar thermoluminescent detectors. Radiat. Prot. Dosim. 2006, 120, 117–120. [Google Scholar] [CrossRef]
Sample Number | Samples | h (μm) | T (oC) | f (μm/min) | LY (%) |
---|---|---|---|---|---|
#1 | YAP:Mn/YAP:Ce | 10.5 | 983 | 0.12 | 14–37 |
#2 | YAP:Mn/YAP:Ce | 17 | 975 | 0.25 | 6 |
#3 | (Lu0.2Y0.8)AP:Mn/YAP:Ce | 52 | 980 | 0.7 | 6 |
#4 | YAP:Mn/YAP:Pr | 14 | 975 | 0.11 | 7.4 |
#5 | GdAP:Ce/YAP:Ce | 19 | 985 | 0.1 | 7 |
#6 | GdAP:Ce/YAP:Ce | 35 | 975 | 0.16 | 7 |
#7 | GdAP:Ce/YAP:Pr | 12 | 980 | 0.1 | 12 |
Material | Density of SCF (g/cm3) | Sample Number | SCF Thickness (µm) | 10 keV Photon Absorption in SCF, (%) |
---|---|---|---|---|
YAP:Mn SCF/YAP:Ce SC | 5.35 | #1 | 10.5 | 21 |
#2 | 17 | 32 | ||
LuYAP:Mn SCF/YAP:Ce SC | 5.64 | #3 | 25 | 59 |
YAP:Mn SCF/YAP:Pr SC | 5.35 | #4 | 14 | 27 |
GdAP:Ce SCF/YAP:Ce SC | 6.09 | #5 | 19 | 90 |
#6 | 35 | 98 | ||
GdAP:Ce SCF/YAP:Pr SC | 6.09 | #7 | 12 | 77 |
(#1) YAP:Mn SCF/YAP:Ce SC h = 10.5 μm | (#2) YAP:Mn SCF/YAP:Ce SC h = 17 μm | ||||||
90Sr/90Y 100Gy | X-rays 100Gy | 90Sr/90Y 100Gy | X-rays 100Gy | ||||
Peak (°C) | Energy (eV) | Peak (°C) | Energy (eV) | Peak (°C) | Energy (eV) | Peak (°C) | Energy (eV) |
- | - | 54 | 1.6 | - | - | 62 | 0.7 |
81 | 0.7 | 75 | 1.3 | 74 | 0.8 | 82 | 0.5 |
145 | 1.4 | 143 | 1.1 | 143 | 1.4 | 137 | 1.4 |
162 | 2.4 | 167 | 1.3 | 155 | 1.2 | 156 | 1.6 |
189 | 1.7 | 193 | 1.2 | 190 | 1.3 | 196 | 0.6 |
213 | 1.4 | - | - | 224 | 1.2 | - | - |
259 | 2.4 | 249 | 3.0 | 257 | 2.9 | 241 | 0.6 |
318 | 1.3 | 315 | 1.25 | 310 | 1.2 | 299 | 1.0 |
(#3) LuYAP:Mn SCF/YAP: Ce SC h = 25μm | (#4) YAP:Mn SCF/YAP:Pr,Ce SC h = 14μm | ||||||
90Sr/90Y 100Gy | X-ray 100Gy | 90Sr/90Y 100Gy | X-ray 100Gy | ||||
Peak (°C) | Energy (eV) | Peak (°C) | Energy (eV) | Peak (°C) | Energy (eV) | Peak (°C) | Energy (eV) |
- | - | 84 | 1.7 | - | - | 87 | 0.6 |
80 | 1.7 | 90 | 1.4 | 68 | 1.05 | 145 | 0.5 |
139 | 1.6 | 140 | 1.6 | 82 | 1.2 | 150 | 1.1 |
152 | 2.3 | 183 | 0.9 | 142 | 1.4 | 192 | 1.5 |
182 | 2.8 | 238 | 1.6 | 174 | 2.2 | 242 | 1.7 |
235 | 1.5 | - | - | 237 | 1.4 | - | - |
251 | 2.5 | 274 | 2.4 | 252 | 2.8 | 259 | 2.9 |
304 | 0.8 | 293 | 1.6 | 305 | 1.03 | 306 | 1.1 |
(#5) GdAP:Ce SCF/YAP:Ce SC h = 19 μm | (#6) GdAP:Ce SCF/YAP:Ce SC h = 35 μm | (#7) GdAP:Ce SCF/YAP:Pr SC h = 12 μm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90Sr/90Y 100Gy | X-rays 100Gy | 90sr/90y 100gy | X-rays 100gy | 90Sr/90Y 100Gy | X-rays 100Gy | ||||||
Peak | Energy (eV) | Peak | Energy (eV) | Peak | Energy (eV) | Peak | Energy (eV) | Peak | Energy (eV) | Peak | Energy (eV) |
182 | 1.8 | 182 | 1.7 | 82 | 1.6 | 79 | 0.4 | 79 | 1.5 | 80 | 1.3 |
145 | 1.4 | 145 | 1.4 | 147 | 0.4 | 151 | 1.4 | 141 | 1.2 | 145 | 1.2 |
241 | 1.5 | - | - | 244 | 1.5 | - | - | 235 | 1.5 | - | - |
256 | 2.0 | 254 | 1.6 | 263 | 2.0 | 254 | 1.6 | 255 | 2.0 | 258 | 1.5 |
301 | 1.9 | 300 | 2.4 | 302 | 1.9 | 306 | 1.9 | 292 | 1.8 | 306 | 2.4 |
329 | 1.8 | 328 | 1.9 | 331 | 2.5 | 331 | 2.4 | 327 | 1.45 | 327 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witkiewicz-Lukaszek, S.; Mrozik, A.; Gorbenko, V.; Zorenko, T.; Bilski, P.; Syrotych, Y.; Zorenko, Y. Development of the Composite Thermoluminescent Detectors Based on the Single Crystalline Films and Crystals of Perovskite Compounds. Materials 2022, 15, 8481. https://doi.org/10.3390/ma15238481
Witkiewicz-Lukaszek S, Mrozik A, Gorbenko V, Zorenko T, Bilski P, Syrotych Y, Zorenko Y. Development of the Composite Thermoluminescent Detectors Based on the Single Crystalline Films and Crystals of Perovskite Compounds. Materials. 2022; 15(23):8481. https://doi.org/10.3390/ma15238481
Chicago/Turabian StyleWitkiewicz-Lukaszek, Sandra, Anna Mrozik, Vitaliy Gorbenko, Tetiana Zorenko, Pawel Bilski, Yurii Syrotych, and Yuriy Zorenko. 2022. "Development of the Composite Thermoluminescent Detectors Based on the Single Crystalline Films and Crystals of Perovskite Compounds" Materials 15, no. 23: 8481. https://doi.org/10.3390/ma15238481
APA StyleWitkiewicz-Lukaszek, S., Mrozik, A., Gorbenko, V., Zorenko, T., Bilski, P., Syrotych, Y., & Zorenko, Y. (2022). Development of the Composite Thermoluminescent Detectors Based on the Single Crystalline Films and Crystals of Perovskite Compounds. Materials, 15(23), 8481. https://doi.org/10.3390/ma15238481