Application of the LPE-Grown LuAG: Ce Film/YAG Crystal Composite Thermoluminescence Detector for Distinguishing the Components of the Mixed Radiation Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials under Study
2.2. Irradiation Sources
2.3. TL Glow-Curve Measurements and TL Emission Spectra Measurements
3. Results
3.1. YAG Substrate
3.2. 241Am Irradiation
3.3. X-Rays and β-Particle Irradiation
3.4. TL Glow-Curve Deconvolution
3.5. Mixed Radiation Field
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Globus, M.; Grinyov, B.; Ratner, M.; Tarasov, V.; Lyubinskiy, V.; Zorenko, Y.; Konstankevych, I. New type of scintillation phoswich detectors for biological, medical and radiation monitoring applications. In Proceedings of the IEEE Nuclear Science Symposium Conference Record, Norfolk, VA, USA, 10–16 November 2002; Volume 1, pp. 352–356. [Google Scholar]
- Chapuran, T.; Balamuth, D.P.; Arrison, J.W.; Görres, J. Channel selection for in-beam spectroscopy using a 4π phoswich array. Nucl. Instrum. Methods Phys. Res. A 1988, 272, 767–784. [Google Scholar] [CrossRef]
- Seigel, J.; Vaquero, J.J.; Gandler, W.R. Depth identification accuracy of a three layer phoswich PET detector module. IEEE Trans. Nucl. Sci. 1999, 46, 485–490. [Google Scholar]
- Saoudi, A.; Lecompte, R. A novel APD-based detector module for multi-modality PET/SPECT/CT scanners. IEEE Trans. Nucl. Sci. 1999, 46, 479–484. [Google Scholar] [CrossRef]
- Ryshikov, V. Studies of cadmium tungstate single crystals for detection of thermal neutrons. In Proceedings of the International Conference on Inorganic Scintillators and Their Applications, Shanghai, China, 22–25 September 1997; pp. 157–160. [Google Scholar]
- Koch, A.; Raven, C. Scintillators for high-resolution x-ray imaging. In Proceedings of the International Conference on Inorganic Scintillators and Their Applications, Shanghai, China, 22–25 September 1997; pp. 28–31. [Google Scholar]
- Koch, A.; Cloetens, P.; Ludwig, W.; Labiche, J.; Ferrand, B. Reading thin-film scintillators with optical microscopes for X-ray imaging. In Proceedings of the 5th International Conference Inorganic Scintillators and Their Applications, Moscow, Russia, 16–20 August 1999; pp. 157–166. [Google Scholar]
- Dujardin, C.; Murillo, A.G.; Leluyer, C.; Gamier, N.; Mugnier, J.; Pedrini, C.; Ko, J.M.; Lebbou, K.; Fukuda, T.; Belsky, A. Interest of thin scintillating films. In Proceedings of the XVI International Conference Inorganic Scintillators and Their Use in Scientific and Industrial Applications, Chamonix, France, 16–21 September 2001. [Google Scholar]
- Dorenbos, P.; van Eijk, C.W.E.; van Loef, E.; Globus, M.; Grinyov, B.; Ratner, M.; Tarasov, V.; Zorenko, Y. Heavy oxyde scintillators: Bulk crystals and thin films for radiation monitoring of environment and biological objects. In Proceedings of the 5th International Conference Inorganic Scintillators and Their Applications, Moscow, Russia, 16–20 August 1999; pp. 577–582. [Google Scholar]
- Martin, T.; Koch, A. Recent developments in X-ray imaging with micrometer spatial resolution. J. Synchrotron Radiat. 2006, 13, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Riva, F.; Douissard, P.-A.; Martin, T.; Carla, F.; Zorenko, Y.V.; Dujardin, C. Epitaxial growth of gadolinium and lutetium-based aluminum perovskites thin film for X-rays micro-imaging applications. CrystEngComm 2016, 18, 608–615. [Google Scholar] [CrossRef]
- Gerasymov, I.; Nepokupnaya, T.; Boyarintsev, A.; Sidletskiy, O.; Kurtsev, D.; Voloshyna, O.; Trubaieva, O.; Boyarintseva, Y.; Sibilieva, T.; Shaposhnyk, A.; et al. GAGG:Ce composite scintillator for X-ray imaging. Opt. Mater. 2020, 109, 110305. [Google Scholar] [CrossRef]
- Prusa, P.; Kucera, M.; Mares, J.A.; Hanus, M.; Beitlerova, A.; Onderisinova, Z.; Nikl, M. Scintillation properties of the Ce-doped multicomponent garnet epitaxial films. Opt. Mater. 2013, 35, 2444–2448. [Google Scholar] [CrossRef]
- Zorenko, Y.; Novosad, S.; Pashkovskii, M.; Lyskovich, A.; Savitskii, V.; Batenchuk, M.; Nazar, I.; Gorbenko, V. Epitaxial structures of garnets as scintillation detectors of ionizing radiation. J. Appl. Spectrosc. 1990, 52, 645–649. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Paprocki, K.; Sidletskiy, O.; Gerasymov, I.; Mares, J.A.; Kucerkova, R.; Nikl, M.; Zorenko, Y. Composite scintillators based on the crystals and single crystalline films of LuAG garnet doped with Ce3+, Pr3+ and Sc3+ ions. Opt. Mater. 2018, 84, 593–599. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Zorenko, Y.; Gieszczyk, W.; Mrozik, A.; Bilski, P. Composite thermoluminescence detectors based on the Ce3+ doped LuAG/YAG and YAG/LuAG epitaxial structures. Radiat. Meas. 2019, 128, 106124. [Google Scholar] [CrossRef]
- Ferrand, B.; Chambaz, B.; Couchaud, M. Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media. Opt. Mater. 1999, 11, 101–114. [Google Scholar] [CrossRef]
- Horowitz, Y.S. Thermoluminescence and Thermoluminescent Dosimetry; CRC Press: Boca Raton, FL, USA, 1983. [Google Scholar]
- McKeever, S.W.S.; Moscovitch, M.; Townsend, P.D. Thermoluminescence Dosimetry Materials: Properties and Uses; Nuclear Technology Publishing: Ashford, UK, 1995. [Google Scholar]
- McKeever, S.W.S.; Akserlod, M.S.; Colyott, L.E. Characteristation of Al2O3 for use in thermally and opically stimulated luminescence doismetry. Radiat. Prot. Dosim. 1999, 84, 163–168. [Google Scholar] [CrossRef]
- Akserlod, M.S.; Lucas, A.C.; Polf, J.C.; McKeever, S.W.S. Optically stiumlated luminescence of Al2O3. Radiat. Meas. 1998, 29, 391–399. [Google Scholar]
- Winiecki, J.; Witkiewicz-Łukaszek, S.; Michalska, P.; Jakubowski, S.; Nizhankovskiy, S.; Zorenko, Y. Basic characteristics of dose distributions of photons beam for radiotherapeutic applications using YAG:Ce crystal detectors. Materials 2022, 15, 7861. [Google Scholar] [CrossRef] [PubMed]
- Markovsky, A.; Gorbenko, V.; Yokosawa, T.; Will, J.; Spiecker, E.; Batentschuk, M.; Elia, J.; Fedorov, A.; Pakuła, M.; Kaczmarek, M.; et al. Structural, luminescence and photoconversion properties of Lu3Al5O12:Ce single crystalline film phosphors for WLED application. J. Alloys Compd. 2022, 929, 167159. [Google Scholar] [CrossRef]
- Bilski, P.; Marczewska, B. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals. Nucl. Instr. Meth. B 2017, 392, 41–45. [Google Scholar] [CrossRef]
- Budzanowski, M.; Olko, P.; Marczewska, B.; Czopyk, Ł.; Słapa, M.; Stras, W.; Traczyk, M.; Talejko, M. Dose distribution around a needle-like anode X-ray Tube: Dye-film vs. Planar thermoluminescent Detectors. Radiat. Prot. Dosim. 2006, 120, 117–120. [Google Scholar] [CrossRef]
- Słapa, M.; Straś, W.; Traczyk, M.; Dora, J.; Snopek, M.; Gutowski, R.; Drabik, W. X-ray tube with needle-like anode. Nukleonika 2002, 47, 95–99. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter. Nucl. Instr. Meth. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Bos, A.J.J. Theory of thermoluminescence. Radiat. Meas. 2007, 41, S45–S56. [Google Scholar] [CrossRef]
- McKeever, S.W.S. Thermoluminescence of Solids; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Furetta, C. Handbook of Thermoluminescence; World Scientific Publishing: Singapore, 2003. [Google Scholar]
- Marczewska, B.; Bilski, P.; Czopyk, L.; Olko, P.; Waligórski, M.P.R.; Zapotoczny, S. Two-dimensional thermoluminescence dosimetry using planar detectors and a TL reader with CCD camera readout. Radiat. Prot. Dosim. 2006, 120, 129–132. [Google Scholar] [CrossRef]
- Zorenko, Y.; Zorenko, T.; Voznyak, T. Luminescence centers in Y3Al5O12:La single crystals. J. Phys. Conf. Ser. 2011, 289, 012028. [Google Scholar] [CrossRef]
- Mori, K. Transient colour centres caused by UV light irradiation in yttrium aluminium garnet crystals. Phys. Status Solidi A 1977, 42, 375–384. [Google Scholar] [CrossRef]
- Lupei, A.; Stoicescu, C.; Lupei, V. X-ray and spectral characterization of defects in garnets. J. Cryst. Growth 1997, 177, 207–210. [Google Scholar] [CrossRef]
- Kuklja, C.M. Defects in yttrium aluminium perovskite and garnet crystals: Atomistic study. J. Phys. Condens. Matter 2000, 12, 2953. [Google Scholar] [CrossRef]
- Stanek, D.C.R.; McClellan, K.J.; Levy, M.R.; Milanese, C.; Grimes, R.W. The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 579, 27–30. [Google Scholar] [CrossRef]
- Varney, C.R.; Selim, F.A. Color centers in YAG. AIMS Mater. Sci. 2015, 2, 560–572. [Google Scholar] [CrossRef]
- Feng, X.Q. Anti-site Defects in YAG and LuAG Crystals. J. Inorg. Mater. 2010, 25, 785–794. [Google Scholar] [CrossRef]
- Pujats, G.A.; Springis, M. The F-type centres in YAG crystals. Radiat. Eff. Defects Solids 2001, 155, 65–69. [Google Scholar] [CrossRef]
- Laguta, H.V.; Buryi, M.; Arhipov, P.; Sidletskiy, O.; Laguta, O.; Brik, M.G.; Nikl, M. Oxygen-vacancy donor-electron Center in Y3Al5O12 garnet crystals: Electron paramagnetic resonance and dielectric spectroscopy study. Phys. Rev. B 2020, 101, 024106. [Google Scholar] [CrossRef] [Green Version]
- Blasse, G.; Grabmeier, B.C. Luminescent Materials; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Mrozik, A.; Bilski, P.; Gieszczyk, W.; Zorenko, Y.; Gorbenko, V. Investigations of the influence of Am-241 photons on the measured alpha particle response of luminescent materials. Radiat. Meas. 2020, 134, 106331. [Google Scholar] [CrossRef]
Sample Number | Material (SCF/SC) | Density of SCF [g/cm3] | Thickness of SCF [µm] | Range of Alpha Particles Energy 3.5 MeV in LuAG [µm] | 10 keV Photon Absorption in LuAG [%] | 60 keV Photon Absorption in LuAG [%] |
---|---|---|---|---|---|---|
#1 | LuAG: Ce/YAG | 6.71 | 15 | 7.80 | 47 | 1.5 |
#2 | 37 | 79 | 3.8 | |||
#3 | 78 | 96 | 7.8 |
Peak Number and Origin of the TL Signal: SCF or SC | Temperature [°C] | Wavelength [nm] | ||||||
---|---|---|---|---|---|---|---|---|
substrate | #1 h = 15 µm | #2 h = 37 µm | #3 h = 78 µm | substrate | #1 h = 15 µm | #2 h = 37 µm | #3 h = 78 µm | |
1 (SC) | 144 | 138 | 144 | 140 | 700 | 702 | 708 | 708 |
2a (SC) | 240 | 245 | 240 | - | 800 | 803 | 804 | - |
2 (SCF) | - | 268 | 290 | 284 | - | 533 | 538 | 542 |
2b (SC) | 300 | 300 | 295 | - | 700 | 711 | 713 | - |
P1 | P2 | P3 | P4 | P5 | |
---|---|---|---|---|---|
90Sr/90Y, h = 78 µm | |||||
Tmax [°C] | 105 | 148 | 170 | - | 282 |
E [eV] | 1.24 | 1.09 | 0.88 | - | 0.94 |
A | 86,283 | 1,161,109 | 134,947 | - | 178,764 |
241Am, h = 78 µm | |||||
Tmax [°C] | 87 | 143 | 158 | 267 | 296 |
E [eV] | 1.24 | 1.09 | 1.03 | 1.2 | 1.11 |
A | 1200 | 29,723 | 2838 | 156,770 | 53,573 |
Sample Number | Thickness of SCF [µm] | calcΦα [cm−2] | calcDβ [Gy] | calcΦα/refΦα | calcDβ/refDβ |
---|---|---|---|---|---|
#1 | 15 | 1.91 × 1011 | 119 | 1.06 | 0.99 |
#2 | 37 | 1.97 × 1011 | 116 | 1.24 | 0.97 |
#3 | 78 | 2.41 × 1011 | 119 | 1.53 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrozik, A.; Bilski, P.; Gieszczyk, W.; Kłosowski, M.; Witkiewicz-Łukaszek, S.; Gorbenko, V.; Zorenko, T.; Zorenko, Y. Application of the LPE-Grown LuAG: Ce Film/YAG Crystal Composite Thermoluminescence Detector for Distinguishing the Components of the Mixed Radiation Field. Materials 2022, 15, 8708. https://doi.org/10.3390/ma15248708
Mrozik A, Bilski P, Gieszczyk W, Kłosowski M, Witkiewicz-Łukaszek S, Gorbenko V, Zorenko T, Zorenko Y. Application of the LPE-Grown LuAG: Ce Film/YAG Crystal Composite Thermoluminescence Detector for Distinguishing the Components of the Mixed Radiation Field. Materials. 2022; 15(24):8708. https://doi.org/10.3390/ma15248708
Chicago/Turabian StyleMrozik, Anna, Paweł Bilski, Wojciech Gieszczyk, Mariusz Kłosowski, Sandra Witkiewicz-Łukaszek, Vitaliy Gorbenko, Tetiana Zorenko, and Yuriy Zorenko. 2022. "Application of the LPE-Grown LuAG: Ce Film/YAG Crystal Composite Thermoluminescence Detector for Distinguishing the Components of the Mixed Radiation Field" Materials 15, no. 24: 8708. https://doi.org/10.3390/ma15248708
APA StyleMrozik, A., Bilski, P., Gieszczyk, W., Kłosowski, M., Witkiewicz-Łukaszek, S., Gorbenko, V., Zorenko, T., & Zorenko, Y. (2022). Application of the LPE-Grown LuAG: Ce Film/YAG Crystal Composite Thermoluminescence Detector for Distinguishing the Components of the Mixed Radiation Field. Materials, 15(24), 8708. https://doi.org/10.3390/ma15248708