Effects of Functionalized Materials and Bacterial Metabolites on Quality Indicators in Composts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used for Composting and Process Conditions
2.2. Chemical Analyses in Materials and Composts
2.3. Biochemical Analyses in Composts
2.4. Parasitological Analyses in Composts
2.5. Statistics
3. Results
3.1. Temperature Changes during Composting
3.2. Effects of Functionalized Materials and Bacterial Metabolites on Selected Chemical Properties of Composts
3.3. Effects of Functionalized Materials and Bacterial Metabolites on the Heavy Metal Content in Composts
3.4. Effects of Functionalized Materials and Bacterial Metabolites on Selected Biochemical Properties of Composts
3.5. Effects of Functionalized Materials and Bacterial Metabolites on Developmental Forms of Selected Parasites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toledo, M.; Siles, J.; Gutiérrez, M.; Martín, M. Monitoring of the composting process of different agroindustrial waste: Influence of the operational variables on the odorous impact. Waste Manag. 2018, 76, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Kacprzak, M.; Kupich, I.; Jasinska, A.; Fijalkowski, K. Bio-based waste’ substrates for degraded soil improvement—Advantages and challenges in European context. Energies 2022, 15, 385. [Google Scholar] [CrossRef]
- Yu, H.; Xie, B.; Khan, R.; Shen, G. The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresour. Technol. 2018, 271, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Mierzwa-Hersztek, M.; Gleń-Karolczyk, K.; Gondek, K. Fungistatic activity of composts with the addition of polymers obtained from thermoplastic corn starch and polyethylene—An innovative cleaner production alternative. Sci. Total Environ. 2018, 635, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Ling, N.; Deng, K.; Song, Y.; Wu, Y.; Zhao, J.; Raza, W.; Huang, Q.; Shen, Q. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiol. Res. 2014, 169, 570–578. [Google Scholar] [CrossRef]
- Kopeć, M.; Gondek, K.; Mierzwa-Hersztek, M.; Antonkiewicz, J. Factors influencing chemical quality of composted poultry waste. Saudi J. Biol. Sci. 2018, 25, 1678–1686. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, M.; Nandal, M.; Khosla, B. Microbes as vital additives for solid waste composting. Heliyon 2020, 6, e03343. [Google Scholar] [CrossRef]
- Walling, E.; Trémier, A.; Vaneeckhaute, C. A review of mathematical models for composting. Waste Manag. 2020, 113, 379–394. [Google Scholar] [CrossRef]
- Sokač, T.; Valinger, D.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Radojčić Redovniković, I.; Jurinjak Tušek, A. Application of optimization and modeling for the composting processes enhancement. Processes 2022, 10, 229. [Google Scholar] [CrossRef]
- Barthod, J.; Rumpel, C.; Dignac, M.-F. Composting with additives to improve organic amendments. A review. Agron. Sustain. Dev. 2018, 38, 17. [Google Scholar] [CrossRef]
- Himanen, M.; Hänninen, K. Effect of commercial mineral-based additives on composting and compost quality. Waste Manag. 2009, 29, 2265–2273. [Google Scholar] [CrossRef] [PubMed]
- Venglovsky, J.; Sasakova, N.; Vargova, M.; Pacajova, Z.; Placha, I.; Petrovsky, M.; Harichova, D. Evolution of temperature and chemical parameters during composting of the pig slurry solid fraction amended with natural zeolite. Bioresour. Technol. 2005, 96, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, A. Co-composting of poultry manure mixtures amended with biochar—The effect of biochar on temperature and C-CO2 emission. Bioresour. Technol. 2016, 200, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Nizami, A.; Aburiazaiza, A.; Barakat, M.; Ismail, I.; Rashid, M. Optimization of food waste compost with the use of biochar. J. Environ. Manag. 2017, 216, 70–81. [Google Scholar] [CrossRef]
- Gabhane, J.; William, S.P.; Bidyadhar, R.; Bhilawe, P.; Anand, D.; Vaidya, A.N.; Wate, S.R. Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresour. Technol. 2012, 114, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xin, H.; Liang, Y.; Burns, R.T. Reduction of ammonia emissions from stored laying hen manure through topical appli-cation of zeolite, Al+Clear, Ferix-3, or poultry litter treatment. J. App. Poultry. Res. 2008, 17, 421–431. [Google Scholar] [CrossRef]
- Gondek, K.; Tabak, M.; Koncewicz-Baran, M.; Kopeć, M. Effects of the Addition of Foils Produced from Polyethylene and Maize Starch to Composted Biomass on Quantitative and Qualitative Composition of Humic Compounds and Optic Parameters of Humic Acids. Pol. J. Environ. Stud. 2015, 24, 2397–2403. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wang, Q.; Chen, X.; Zhang, Y.; Sun, Y.; Li, R.; Li, J.; Zhang, Z. Elucidating the optimum added dosage of Diatomite during co-composting of pig manure and sawdust: Carbon dynamics and microbial community. Sci. Total Environ. 2021, 777, 146058. [Google Scholar] [CrossRef]
- Özogul, F.; Šimat, V.; Gokdogan, S.; Regenstein, J.M.; Özogul, Y. Effect of Natural Zeolite (Clinoptilolite) on in vitro Biogenic Amine Production by Gram Positive and Gram Negative Pathogens. Front. Microbiol. 2018, 9, 2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Monedero, M.; Cayuela, M.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef]
- Ahmed, E.; Holmström, S.J.M. Siderophores in environmental research: Roles and applications. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef]
- Xi, B.-D.; Liu, H.-L.; Huang, G.H.; Zhang, B.; Qin, X. Effect of bio-surfactant on municipal solid waste composting process. J. Environ. Sci. 2005, 17, 409–413. [Google Scholar]
- Gong, X.; Wei, L.; Yu, X.; Li, S.; Sun, X.; Wang, X. Effects of Rhamnolipid and Microbial Inoculants on the Vermicomposting of Green Waste with Eisenia fetida. PLoS ONE 2017, 12, e0170820. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, S.; Hodgson, D.J.; Buckling, A. Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc. R. Soc. B Lond. 2014, 281, 20140858. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, S.; Buckling, A. The sociality of bioremediation: Hijacking the social lives of microbial populations to clean up heavy metal contamination. EMBO Rep. 2015, 16, 1241–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braud, A.; Geoffroy, V.; Hoegy, F.; Mislin, G.L.A.; Schalk, I.J. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ. Microbiol. Rep. 2010, 2, 419–425. [Google Scholar] [CrossRef]
- Hesse, E.; O’Brien, S.; Luján, A.M.; Sanders, D.; Bayer, F.; Veen, E.M.; Hodgson, D.J.; Buckling, A. Author response for Stress causes interspecific facilitation within a compost community. Ecol. Lett. 2021, 10, 2169–2177. [Google Scholar] [CrossRef] [PubMed]
- Styczynski, M.; Dziewit, L.; Debiec-Andrzejewska, K. New Strains of Psychrotolerant Bacteria, Composition, Their Application and Method of Soil Bioaugmentation. Polish Patent Appl. P.437824, 5 November 2021. [Google Scholar]
- Styczynski, M.; Biegniewski, G.; Decewicz, P.; Rewerski, B.; Debiec-Andrzejewska, K.; Dziewit, L. Application of psychrotol-erant Antarctic bacteria and their metabolites as efficient plant growth promoting agents. Front. Bioengineer. Biotechnol. 2022, 10, 772891. [Google Scholar] [CrossRef]
- Operating Instructions Vario MAX Cube; Elementar Analysensysteme GmbH: Langenselbold, Germany, 2013; p. 407.
- Gondek, K.; Mierzwa-Hersztek, M.; Kopeć, M. Mobility of heavy metals in sandy soil after application of composts produced from corn straw, sewage sludge and biochar. J. Environ. Manag. 2018, 210, 87–95. [Google Scholar] [CrossRef] [PubMed]
- ISO 16072:2002; Soil Quality—Laboratory Methods for Determination of Microbial Soil Respiration. International Organization for Standardization: Geneva, Switzerland, 2002.
- ISO PN-EN ISO 14240-1:2011; Soil Quality—Determination of Soil Microbial Biomass—Part 1: Substrate-Induced Respiration Method (ISO 14240-1:1997). International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 17155:2012; Soil Quality—Determination of Abundance and Activity of Soil Microflora Using Respiration Curves. International Organization for Standardization: Geneva, Switzerland, 2012.
- Xiao, Y.; Zeng, G.-M.; Yang, Z.-H.; Shi, W.-J.; Huang, C.; Fan, C.-Z.; Xu, Z.-Y. Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste. Bioresour. Technol. 2009, 100, 4807–4813. [Google Scholar] [CrossRef]
- Malinowski, M.; Wolny-Koładka, K.; Vaverková, M.D. Effect of biochar addition on the OFMSW composting process under real conditions. Waste Manag. 2019, 84, 364–372. [Google Scholar] [CrossRef]
- Guo, X.-X.; Wu, S.-B.; Wang, X.-Q.; Liu, H.-T. Impact of biochar addition on three-dimensional structural changes in aggregates associated with humus during swine manure composting. J. Clean. Prod. 2021, 280, 124380. [Google Scholar] [CrossRef]
- Jalalipour, H.; Jaafarzadeh, N.; Morscheck, G.; Narra, S.; Nelles, M. Potential of Producing Compost from Source-Separated Municipal Organic Waste (A Case Study in Shiraz, Iran). Sustainability 2020, 12, 9704. [Google Scholar] [CrossRef]
- Soudejani, H.T.; Kazemian, H.; Inglezakis, V.; Zorpas, A.A. Application of zeolites in organic waste composting: A review. Biocatal. Agric. Biotechnol. 2019, 22, 101396. [Google Scholar] [CrossRef]
- Wong, J.C.; Fang, M.; Li, G.X.; Wong, M.H. Feasibility of Using Coal Ash Residues as CO-Composting Materials for Sewage Sludge. Environ. Technol. 1997, 18, 563–568. [Google Scholar] [CrossRef]
- Fang, M.; Wong, J.W.C. Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting. Environ. Pollut. 1999, 106, 83–89. [Google Scholar] [CrossRef]
- Sasaki, H.; Kitazume, O.; Nonaka, J.; Hikosaka, K.; Otawa, K.; Itoh, K.; Nakai, Y. Effect of a commercial microbiological additive on beef manure compost in the composting process. Anim. Sci. J. 2006, 77, 545–548. [Google Scholar] [CrossRef]
- Gajalakshmi, S.; Abbasi, S.A. Solid Waste Management by Composting: State of the Art. Crit. Rev. Environ. Sci. Technol. 2008, 38, 311–400. [Google Scholar] [CrossRef]
- Hassen, A.; Belguith, K.; Jedidi, N.; Cherif, A.; Cherif, M.; Boudabous, A. Microbial characterization during composting of municipal solid waste. Bioresour. Technol. 2001, 80, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Polprasert, C. Organic Waste Recycling. Technology and Management, 3rd ed.; IWA Publishing: Bangkok, Thailand, 2007; pp. 88–134. [Google Scholar]
- Strauch, D. Survival of pathogenic micro-organisms and parasites in excreta, manure and sewage sludge. OIE Rev. Sci. Tech. 1991, 10, 813–846. [Google Scholar] [CrossRef]
- Sobrinho, E.M.; De Almeida, A.C.; Colen, F.; De Souza, R.M.; Menezes, I.R.; Vieira, V.A.; Oliveira, L.N.; Da Fonseca, M.P.; Santos, H.O.; Brandi, I.V.; et al. Composting as alternative treatment of solid wastes from laboratory animal care facilities. Acta Vet. Bras. 2011, 5, 184–191. [Google Scholar]
Material | Composts | ||||||
---|---|---|---|---|---|---|---|
C | CB | CBM | CZ | CZM | CD | CDM | |
Share in Dry Matter (%) | |||||||
Poultry litter | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Corn straw | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
Fresh grass | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Brown coal | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Leonardite | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Biochar | - | 5 | 5 | - | - | - | - |
Zeolite | - | - | - | 5 | 5 | - | - |
Diatomite | - | - | - | - | - | 5 | 5 |
Pseudomonas sp. metabolites | - | - | 0.20 * | - | 0.20 * | - | 0.20 * |
Bacillus subtilis metabolities | - | - | 0.20 * | - | 0.20 * | - | 0.20 * |
Material | Dry Matter | Ash | N | C | pH | EC * | Cd | Cu | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | g kg−1 dm | mS cm−1 | mg kg−1 dm | |||||||
Poultry litter | 795 ± 72 | 345 ± 30 | 34.66 ± 1.77 | 307 ± 7 | 6.93 ± 0.00 | 3.99 ± 0.19 | 0.485 ± 0.031 | 13.14 ± 0.75 | 4.86 ± 0.05 | 96.85 ± 1.08 |
Corn straw | 925 ± 46 | 85 ± 1 | 13.62 ± 0.11 | 438 ± 22 | 6.13 ± 0.02 | 3.02 ± 0.080 | 0.237 ± 0.047 | 2.93 ± 0.07 | 1.96 ± 0.53 | 59.27 ± 1.26 |
Fresh grass | 313 ± 30 | 94 ± 2 | 14.75 ± 0.46 | 442 ± 4 | 5.83 ± 0.05 | 3.98 ± 0.16 | 0.391 ± 0.001 | 2.91 ± 0.01 | 2.04 ± 0.33 | 25.11 ± 0.14 |
Brown coal | 682 ± 47 | 82 ± 2 | 8.53 ± 0.02 | 647 ± 1 | 4.58 ± 0.28 | 0.58 ± 0.04 | 0.133 ± 0.025 | 1.05 ± 0.01 | 1.78 ± 0.07 | 5.37 ± 0.19 |
Leonardite | 598 ± 36 | 421 ± 14 | 4.77 ± 0.08 | 426 ± 9 | 5.77 ± 0.25 | 0.32 ± 0.02 | 0.264 ± 0.007 | 4.32 ± 0.22 | 2.57 ± 0.14 | 69.86 ± 0.97 |
Biochar | 661 ± 72 | 94 ± 6 | 6.48 ± 0.36 | 420 ± 3 | 7.47 ± 0.16 | 0.44 ± 0.09 | 0.247 ± 0.032 | 5.48 ± 0.14 | 1.63 ± 0.01 | 29.06 ± 0.73 |
Zeolite | 970 ± 29 | 943 ± 1 | 0.81 ± 0.09 | 32 ± 1 | 11.80 ± 0.07 | 1.86 ± 0.05 | 0.346 ± 0.028 | 21.70 ± 0.86 | 11.71 ± 0.89 | 35.13 ± 1.89 |
Diatomite | 999 ± 15 | 999 ± 0 | 0.39 ± 0.06 | <0.001 ± 0 | 10.02 ± 0.68 | 0.61 ± 0.03 | 0.353 ± 0.022 | 24.38 ± 0.68 | 12.38 ± 0.97 | 37.78 ± 2.07 |
Pseudomonas sp. metabolites | - | 197 ± 1 | 68.09 ± 0.11 | 453 ± 0 | - | - | 0.051 ± 0.015 | 0.76 ± 0.21 | 1.00 ± 0.48 | 5.49 ± 1.52 |
Bacillus subtilis metabolites | - | 344 ± 2 | 100.21 ± 0.67 | 336 ± 3 | - | - | 0.005 ± 0.000 | 0.64 ± 0.06 | 0.61 ± 0.42 | 20.41 ± 3.03 |
Compost | Dry Matter | pH | EC | C | N | Cd * | Cu * | Pb * | Zn * |
---|---|---|---|---|---|---|---|---|---|
g kg−1 | mS cm−1 | g kg−1 dm | mg kg−1 dm | ||||||
C | 470.0 ** ± 44.7 a | 7.54 ± 0.01 a | 4.36 ± 0.07 b | 245.0 ± 2.6 c | 27.1 d ± 0.8 d | 0.047 ± 0.002 b | 2.50 ± 0.14 a | 0.463 ± 0.065 a | 11.19 ± 0.3 d |
CB | 475.6 ± 57.1 a | 7.58 ± 0.01 b | 4.19 ± 0.14 b | 326.5 ± 5.5 d | 26.7 ± 0.5 cd | 0.084 ± 0.004 d | 2.95 ± 0.01 a | 0.479 ± 0.018 a | 11.92 ± 0.2 e |
CBM | 468.7 ± 45.7 a | 7.61 ± 0.02 b | 4.60 ± 0.29 c | 321.1 ± 15.4 d | 25.7 ± 1.6 c | 0.083 ± 0.005 d | 3.01 ± 0.08 a | 0.410 ± 0.054 a | 12.07 ± 0.1 e |
CZ | 457.3 ± 54.9 a | 7.87 ± 0.01 c | 3.64 ± 0.03 a | 217.8 ± 0.6 b | 21.3 ± 0.1 a | 0.042 ± 0.003 b | 4.46 ± 0.17 b | 0.736 ± 0.035 c | 10.81 ± 0.4 c |
CZM | 493.0 ± 49.1 a | 7.83 ± 0.04 c | 3.77 ± 0.08 a | 217.9 ± 3.6 b | 23.4 ± 0.1 b | 0.064 ± 0.000 c | 5.29 ± 0.09 c | 0.626 ± 0.041 b | 11.52 ± 0.0 d |
CD | 518.0 ± 59.2 a | 7.61 ± 0.02 b | 3.61 ± 0.08 a | 193.8 ± 1.0 a | 21.6 ± 0.3 a | 0.017 ± 0.008 a | 6.47 ± 0.61 d | 0.543 ± 0.082 b | 8.37 ± 0.1 a |
CDM | 506.9 ± 51.9 a | 7.60 ± 0.00 b | 3.76 ± 0.03 a | 195.6 ± 5.7 a | 21.8 ± 0.7 a | 0.023 ± 0.005 a | 5.19 ± 0.78 d | 0.542 ± 0.010 b | 9.26 ± 0.0 b |
Compost | DhA | BR | SIR | QR |
---|---|---|---|---|
µg TPF g dm h | µg CO2 g dm h | |||
C | 508.4 * ± 15.1 d | 220.5 ± 3.0 d | 465.4 ± 19.8 c | 0.475 ± 0.027 bc |
CB | 433.9 ± 15.5 ab | 177.6 ± 5.0 b | 465.2 ± 7.5 c | 0.382 ± 0.005 a |
CBM | 416.6 ± 15.1 a | 195.8 ± 10.6 c | 568.3 ± 4.8 d | 0.347 ± 0.048 a |
CZ | 448.1 ± 8.5 bc | 202.5 ± 2.7 c | 385.6 ± 4.0 a | 0.525 ± 0.001 d |
CZM | 495.5 ± 6.9 d | 222.7 ± 15.9 d | 434.1 ± 9.3 bc | 0.513 ± 0.026 cd |
CD | 410.4 ± 11.6 a | 155.2 ± 3.4 a | 400.3 ± 9.0 ab | 0.388 ± 0.017 a |
CDM | 461.9 ± 21.9 c | 196.5 ± 4.9 c | 434.3 ± 2.2 bc | 0.452 ± 0.009 b |
Sample | Eimeria sp. | Capillaria sp. |
---|---|---|
C | + | ++ |
CB | − | − |
CBM | − | + |
CZ | − | − |
CZM | − | − |
CD | − | − |
CDM | − | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gondek, K.; Micek, P.; Mierzwa-Hersztek, M.; Kowal, J.; Andres, K.; Szczurowska, K.; Lis, M.; Smoroń, K. Effects of Functionalized Materials and Bacterial Metabolites on Quality Indicators in Composts. Materials 2022, 15, 8564. https://doi.org/10.3390/ma15238564
Gondek K, Micek P, Mierzwa-Hersztek M, Kowal J, Andres K, Szczurowska K, Lis M, Smoroń K. Effects of Functionalized Materials and Bacterial Metabolites on Quality Indicators in Composts. Materials. 2022; 15(23):8564. https://doi.org/10.3390/ma15238564
Chicago/Turabian StyleGondek, Krzysztof, Piotr Micek, Monika Mierzwa-Hersztek, Jerzy Kowal, Krzysztof Andres, Katarzyna Szczurowska, Marcin Lis, and Krzysztof Smoroń. 2022. "Effects of Functionalized Materials and Bacterial Metabolites on Quality Indicators in Composts" Materials 15, no. 23: 8564. https://doi.org/10.3390/ma15238564
APA StyleGondek, K., Micek, P., Mierzwa-Hersztek, M., Kowal, J., Andres, K., Szczurowska, K., Lis, M., & Smoroń, K. (2022). Effects of Functionalized Materials and Bacterial Metabolites on Quality Indicators in Composts. Materials, 15(23), 8564. https://doi.org/10.3390/ma15238564