Physical and Mechanical Properties of Rapeseed Straw Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rapeseed Straws
2.1.1. Microstructural Characterization
2.1.2. Methods for Chemical Characterization
2.1.3. Methods for Physical Characterization
Bulk Density
Particle Size Distribution
Water Absorption
Moisture Content
2.2. Rapeseed Concrete
2.2.1. Thermal Conductivity Test
2.2.2. Mechanical Test
3. Results and Discussion
3.1. Rapeseed Straws
3.1.1. Microstructural Characterization
3.1.2. Chemical Characterization
3.1.3. Physical Characterization
Particle Size Analysis
Bulk Density
Water Absorption
Moisture Content
3.2. Rapeseed Concrete
3.2.1. Thermal Behavior of Rapeseed Concrete
Influence of Density on the Thermal Conductivity
Influence of Aggregate Size on the Thermal Conductivity
Influence of Grinding Type on the Thermal Conductivity
3.2.2. Mechanical Behavior of Rapeseed Concrete
Influence of Climate and Harvest Year
Influence of Aggregate Size
Influence of the Grinding Type
Case of Mixing Two Batches of Straw
4. Conclusions
- The year of harvest had no influence on the thermal and mechanical properties of rapeseed concrete, while climate, aggregate size, and type of crushing had a significant effect on the concrete’s compressive strength but little influence on its thermal conductivity;
- Aggregates of 20 mm provided better compressive strength to rapeseed straw concrete rather than 10 mm since the 20 mm straws prevented the propagation of cracks more efficiently. In contrast, smaller straws improved the thermal performance of the concrete very slightly;
- The diversification of straw sources led to better mechanical performance for the rapeseed concrete because it combined the hardness of Somme straws with the flexibility of Marne. This variability improved compressive strength by 10% while maintaining good insulating properties;
- The type of straw grinding had little influence on the performance of the rapeseed concrete. Impact grinding improved mechanical strength slightly but had little effect on thermal performance. This is due to the partial degeneration of the pith and hence of the most porous portion of the straw.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Énergie Dans Les Bâtiments|Ministères Écologie Énergie Territoires. Available online: https://www.ecologie.gouv.fr/energie-dans-batiments (accessed on 26 October 2022).
- Dennis Jones, C.B. Performance of Bio-Based Building Materials, 1st ed.; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Ba, L.; El Abbassi, I.; Sidi, C.; Kane, E.; Darcherif, A.-M.; Ndongo, M. The Challenges of Local and Bio-Sourced Materials on Thermal Performance: Review, Classification and Opportunity. Int. J. Eng. Res. Afr. 2020, 47, 85–101. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Almeida, G.; Nguyen, T.M.L.; Zhang, J.; Lu, P.; Colin, J.; Perré, P. A Critical Review of Current Imaging Techniques to Investigate Water Transfers in Wood and Biosourced Materials. Transp. Porous Media 2021, 137, 21–61. [Google Scholar] [CrossRef]
- Buildings, M.C.-E. Young’s Modulus and Thermophysical Performances of Bio-Sourced Materials Based on Date Palm Fibers. Energy Build. 2016, 129, 589–597. [Google Scholar]
- La Filière Des Produits Biosourcés–Ademe. Available online: https://expertises.ademe.fr/production-durable/produits-biosources/quoi-parle-t/filiere-produits-biosources (accessed on 27 October 2022).
- Collet, F.; Chamoin, J.; Prétot, S.; Lanos, C.; Pretot, S. Comparison of the Hygric Behaviour of Three Hemp Concretes. Energy Build. 2013, 62, 294–303. [Google Scholar] [CrossRef]
- Collet, F.; Bart, M.; Serres, L.; Miriel, J. Porous Structure and Water Vapour Sorption of Hemp-Based Materials. Constr. Build. Mater. 2008, 22, 1271–1280. [Google Scholar] [CrossRef]
- Seng, B.; Magniont, C.; Gallego, S.; Buildings, S.L.-E. Behavior of a Hemp-Based Concrete Wall under Dynamic Thermal and Hygric Solicitations. Energy Build. 2021, 232, 110669. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Le, A.T.; Promis, G.; Laidoudi, B.; Crigny, A.; Dupre, B.; Langlet, T. Characterization of Flax Lime and Hemp Lime Concretes: Hygric Properties and Moisture Buffer Capacity. Energy Build. 2015, 88, 91–99. [Google Scholar] [CrossRef]
- Delannoy, G.; Marceau, S.; Glé, P.; Gourlay, E.; Guéguen-Minerbe, M.; Diafi, D.; Nour, I.; Amziane, S.; Farcas, F. Influence of Binder on the Multiscale Properties of Hemp Concretes. Eur. J. Environ. Civ. Eng. 2019, 23, 609–625. [Google Scholar] [CrossRef]
- Belakroum, R.; Gherfi, A.; Bouchema, K.; Gharbi, A.; Kerboua, Y.; Kadja, M.; Maalouf, C.; Mai, T.H.; El Wakil, N.; Lachi, M. Hygric Buffer and Acoustic Absorption of New Building Insulation Materials Based on Date Palm Fibers. J. Build. Eng. 2017, 12, 132–139. [Google Scholar] [CrossRef]
- Rubino, C.; Bonet Aracil, M.; Gisbert-Payá, J.; Liuzzi, S.; Stefanizzi, P.; Zamorano Cantó, M.; Martellotta, F. Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers. Materials 2019, 12, 4020. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.X.; Wu, F.; Yu, Q.; Brouwers, H.J.H. Bio-Based Ultra-Lightweight Concrete Applying Miscanthus Fibers: Acoustic Absorption and Thermal Insulation. Cem. Concr. Compos. 2020, 114, 103829. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal Conductivity of Hemp Concretes: Variation with Formulation, Density and Water Content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A Review on Bio-Based Lubricants and Their Applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Mati-Baouche, N.; De Baynast, H.; Lebert, A.; Sun, S.; Javier, C.; Lopez-Mingo, S.; Leclaire, P.; Michaud, P. Mechanical, Thermal and Acoustical Characterizations of an Insulating Bio-Based Composite Made from Sunflower Stalks Particles and Chitosan. Ind. Crops Prod. 2014, 58, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Pierre, T.; Colinart, T.; Glouannec, P. Measurement of Thermal Properties of Biosourced Building Materials. Int. J. Thermophys. 2014, 35, 1832–1852. [Google Scholar] [CrossRef]
- Sáez-Pérez, M.P.; Brümmer, M.; Durán-Suárez, J.A. A Review of the Factors Affecting the Properties and Performance of Hemp Aggregate Concretes. J. Build. Eng. 2020, 31, 101323. [Google Scholar] [CrossRef]
- Cérézo, V. Propriétés Mécaniques, Thermiques et Acoustiques d’un Matériau à Base de Particules Végétales: Approche Expérimentale et Modélisation Théorique. Doctoral Dissertation, Institut National des Sciences Appliquées de Lyon, Lyon, France, 2005. [Google Scholar]
- Nguyen, T.T.; Picandet, V.; Carre, P.; Lecompte, T.; Amziane, S.; Baley, C. Effect of Compaction on Mechanical and Thermal Properties of Hemp Concrete. Eur. J. Environ. Civ. Eng. 2010, 14, 545–560. [Google Scholar] [CrossRef]
- Nguyen, T.T. Contribution à l’étude de La Formulation et Du Procédé de Fabrication d’éléments de Construction En Béton de Chanvre. Doctoral Dissertation, Université de Bretagne Sud, Lorient, France, 2010. [Google Scholar]
- Ahmad, M.R.; Chen, B. Influence of Type of Binder and Size of Plant Aggregate on the Hygrothermal Properties of Bio-Concrete. Constr. Build. Mater. 2020, 251, 118981. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Moisture Transfer and Thermal Properties of Hemp-Lime Concretes. Constr. Build. Mater. 2014, 64, 270–276. [Google Scholar] [CrossRef]
- Colza–Vert l’avenir. Available online: https://vert-lavenir.com/colza/ (accessed on 20 October 2021).
- Loire, D.E. Mémento; Direction régionale de l’alimentation, de l’agriculture et de la forêt des Pays de la Loire Service régional de l’information statistique et économique: Nantes, France, 2020; pp. 1–32. [Google Scholar]
- Selma, B.E.L.L.A.R.A. Optimisation de Liants Ternaires Bas Carbone, à Base de Déchets Minéraux: Impact Sur Les Performances Mécaniques et Sur Certains Indicateurs de Durabilité. Acad. J. Civ. Eng. 2022, 40. [Google Scholar]
- Colville, J.; de Kruif, K.; Huyghe, E.; Maes, L.; Russell, E.; Sanssen, P.; Vandevelde, L. SAFE-ICE: Recherche, Innovation et Soutien Aux Entreprises Dans Une Économie Bas Carbone; INTERREG IV A 2 Mers Seas Zeeën: Lille, France, 2014. [Google Scholar]
- Mat, N. Dynamiques de Transition Dans Les Territoires Portuaires: Apport de l’écologie Industrielle et Territoriale Aux Processus d’adaptation Vers Une Société Bas-Carbone. Doctoral Dissertation, Saint-Etienne, EMSE, Saint-Étienne, France, 2015. [Google Scholar]
- Rahim, M.; Douzane, O.; Le, A.T.; Promis, G.; Langlet, T. Characterization and Comparison of Hygric Properties of Rape Straw Concrete and Hemp Concrete. Constr. Build. Mater. 2016, 102, 679–687. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Le, A.T.; Langlet, T. Effect of Moisture and Temperature on Thermal Properties of Three Bio-Based Materials. Constr. Build. Mater. 2016, 111, 119–127. [Google Scholar] [CrossRef]
- Delannoy, G.; Marceau, S.; Glé, P.; Gourlay, E.; Guéguen-Minerbe, M.; Diafi, D.; Amziane, S.; Farcas, F. Impact of Hemp Shiv Extractives on Hydration of Portland Cement. Constr. Build. Mater. 2020, 244, 118300. [Google Scholar] [CrossRef]
- Chabannes, M.; Nozahic, V.; Amziane, S. Design and Multi-Physical Properties of a New Insulating Concrete Using Sunflower Stem Aggregates and Eco-Friendly Binders. Mater. Struct. 2015, 48, 1815–1829. [Google Scholar] [CrossRef]
- Soest, P.J.V.; Wine, R.H. Use of Detergents in the Analysis of Fibrous Feeds. IV. Determination of Plant Cell-Wall Constituents. J. AOAC Int. 1967, 50, 50–55. [Google Scholar] [CrossRef]
- Soest, P.J.V.; McQueen, R.W. The Chemistry and Estimation of Fibre. Proc. Nutr. Soc. 1973, 32, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Standard XP U44-162. Available online: https://www.boutique.afnor.org/en-gb/standard/xp-u44162/soil-improvers-and-growing-media-characterization-of-organic-matter-by-bioc/fa165407/34626 (accessed on 28 February 2022).
- Standard NF V18-122. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-v18122/animal-feeding-stuffs-determination-of-sequential-cellwall-method-by-treatm/fa179829/42103 (accessed on 1 March 2022).
- Viel, M.; Collet, F.; Lanos, C. Chemical and Multi-Physical Characterization of Agro-Resources’ by-Product as a Possible Raw Building Material. Ind. Crops Prod. 2018, 120, 214–237. [Google Scholar] [CrossRef]
- Carrier, M.; Loppinet-Serani, A.; Denux, D.; Lasnier, J.M.; Ham-Pichavant, F.; Cansell, F.; Aymonier, C. Thermogravimetric Analysis as a New Method to Determine the Lignocellulosic Composition of Biomass. Biomass Bioenergy 2011, 35, 298–307. [Google Scholar] [CrossRef]
- Amziane, S.; Collet, F.; Lawrence, M.; Magniont, C.; Picandet, V.; Sonebi, M. Recommendation of the RILEM TC 236-BBM: Characterisation Testing of Hemp Shiv to Determine the Initial Water Content, Water Absorption, Dry Density, Particle Size Distribution and Thermal Conductivity. Mater. Struct. 2017, 50, 10. [Google Scholar] [CrossRef] [Green Version]
- Rapport Sur La Filière Chanvre Construction Chanvre. Available online: https://www.construire-en-chanvre.fr (accessed on 1 March 2022).
- Norme NF EN 12667. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-en-12667/performance-thermique-des-materiaux-et-produits-pour-le-batiment-determinat/fa045167/18796 (accessed on 1 March 2021).
- Standard NF EN 12390-2. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-123902/testing-hardened-concrete-part-2-making-and-curing-specimens-for-strength-t/fa190565/83458 (accessed on 28 February 2022).
- Standard NF EN 196-1. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-1961/methods-of-testing-cement-part-1-determination-of-strength/fa184622/57803 (accessed on 1 March 2022).
- Hornsby, P.R.; Hinrichsen, E.; Tarverdi, K. Preparation and Properties of Polypropylene Composites Reinforced with Wheat and Flax Straw Fibres Part I Fibre Characterization. J. Mater. Sci. 1997, 32, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Diquélou, Y.; Gourlay, E.; Arnaud, L.; Kurek, B. Impact of Hemp Shiv on Cement Setting and Hardening: Influence of the Extracted Components from the Aggregates and Study of the Interfaces with the Inorganic Matrix. Cem. Concr. Compos. 2015, 55, 112–121. [Google Scholar] [CrossRef]
- Nguyen, G.; Vlassiouk, I.; Siwy, Z.S. Comparison of Bipolar and Unipolar Ionic Diodes. Nanotechnology 2010, 21, 265301. [Google Scholar] [CrossRef] [PubMed]
- Cappelletto, P.; Brizzi, M.; Mongardini, F.; Barberi, B.; Sannibale, M.; Nenci, G.; Poli, M.; Corsi, G.; Grassi, G.; Pasini, P. Italy-Grown Hemp: Yield, Composition and Cannabinoid Content. Ind. Crops Prod. 2011, 13, 101–113. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.E.; Magniont, C.; Tribout, C.; Bertron, A. Plant Aggregates and Fibers in Earth Construction Materials: A Review. Constr. Build. Mater. 2016, 111, 719–734. [Google Scholar] [CrossRef]
- Greenhalf, C.E.; Nowakowski, D.J.; Bridgwater, A.V.; Titiloye, J.; Yates, N.; Riche, A.; Shield, I. Thermochemical Characterisation of Straws and High Yielding Perennial Grasses. Ind. Crops Prod. 2012, 36, 449–459. [Google Scholar] [CrossRef]
- Igathinathane, C.; Pordesimo, L.O.; Columbus, E.P.; Batchelor, W.D.; Methuku, S.R. Shape Identification and Particles Size Distribution from Basic Shape Parameters Using ImageJ. Comput. Electron. Agric. 2008, 63, 168–182. [Google Scholar] [CrossRef]
- Page, J.; Sonebi, M.; Amziane, S. Design and Multi-Physical Properties of a New Hybrid Hemp-Flax Composite Material. Constr. Build. Mater. 2017, 139, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Picandet, V.; Amziane, S.; Baley, C. Influence of Compactness and Hemp Hurd Characteristics on the Mechanical Properties of Lime and Hemp Concrete. Eur. J. Environ. Civ. Eng. 2009, 13, 1039–1050. [Google Scholar] [CrossRef]
- Brouard, Y.; Belayachi, N.; Hoxha, D.; Ranganathan, N.; Méo, S. Mechanical and Hygrothermal Behavior of Clay—Sunflower (Helianthus annuus) and Rape Straw (Brassica napus) Plaster Bio-Composites for Building Insulation. Constr. Build. Mater. 2018, 161, 196–207. [Google Scholar] [CrossRef]
- Laidoudi, B.; Flamin, C.; Crigny, A.; Ferrari, J.; Galzy, G.; Dupré, B. Bio Based Concrete with Crushed Rape Straw, a Good Alternative to Develop an Affordable Bio Based Concrete for Construction and Renovation. Acad. J. Civ. Eng. 2015, 33, 23–30. [Google Scholar]
- Bouasker, M.; Belayachi, N.; Hoxha, D.; Al-Mukhtar, M. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications. Materials 2014, 7, 3034–3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, S.T.; Tran-Le, A.D.; Vu, M.N.; To, Q.D.; Douzane, O.; Langlet, T. Modeling Thermal Conductivity of Hemp Insulation Material: A Multi-Scale Homogenization Approach. Build. Environ. 2016, 107, 127–134. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Magniont, C.; Aubert, J.E. Characterization of Barley Straw, Hemp Shiv and Corn Cob as Resources for Bioaggregate Based Building Materials. Waste Biomass Valorization 2017, 9, 1095–1112. [Google Scholar] [CrossRef]
- De, P.; Sacher, J. Le Colza Dans La Construction Porteurs de Projets: Le CoDEM et COOPENERGIE Associations de Promotion: Bâtir2mains et Symbiose Centres de Ressources: Le Cd2e et Le CoDEM Consultante Éco-Construction. 2017. Available online: https://www.bioeconomie-hautsdefrance.fr/wp-content/uploads/2020/05/etat_des_lieux_filiere_colza_construction_hdf.pdf (accessed on 1 March 2022).
- Colinart, T.; Pajeot, M.; Vinceslas, T.; Hellouin De Menibus, A.; Lecompte, T. Thermal Conductivity of Biobased Insulation Building Materials Measured by Hot Disk: Possibilities and Recommendation. J. Build. Eng. 2021, 43, 102858. [Google Scholar] [CrossRef]
- Johra, H.; Heiselberg, P. Influence of Internal Thermal Mass on the Indoor Thermal Dynamics and Integration of Phase Change Materials in Furniture for Building Energy Storage: A Review. Renew. Sustain. Energy Rev. 2017, 69, 19–32. [Google Scholar] [CrossRef]
- Férec, J.; Picandet, V.; Pham, T.H.; Tronet, P.; Costa, J.; Pilvin, P. Etude Expérimentale et Numérique de La Conductivité Thermique d’un Composite Chaux-Chanvre. In Proceedings of the XXXe Rencontres AUGC-IBPSA, Chambéry, France, 6–8 June 2012. [Google Scholar]
- Rahim, M.; Djedjig, R.; Wu, D.; Bennacer, R.; EL Ganaoui, M. Experimental Investigation of Hygrothermal Behavior of Wooden-Frame House under Real Climate Conditions. Energy Built Environ. 2021; in press. [Google Scholar] [CrossRef]
- Youssef, A. Prise En Compte Des Apports Mécaniques Du Béton de Chanvre Pour Le Calcul de Structure Bois/Béton de Chanvre et Métal/Béton de Chanvre. Doctoral Dissertation, Université Bretagne Loire (COMUE), Rennes, France, 2017. [Google Scholar]
- Arnaud, L.; Gourlay, E. Experimental Study of Parameters Influencing Mechanical Properties of Hemp Concretes. Constr. Build. Mater. 2012, 28, 50–56. [Google Scholar] [CrossRef]
- Walker, S.; Bloem, D.L. Effects of Aggregate Size on Properties of Concrete. ACI J. Proc. 1960, 57, 283–298. [Google Scholar] [CrossRef]
M15 | M16 | S16 | |
---|---|---|---|
0.25–10 mm | X | X | X |
0.25–20 mm | X | X | X |
0.25–20 mm Impact | X |
Cellulose (%) | Hemicellulose (%) | Lignin (%) | Soluble (%) | Inorganic Materials (%) | ||
---|---|---|---|---|---|---|
Flax | 68–85 | 10–17 | 3–5 | - | 1–2 | [47] |
Hemp | 51.6 | 21.5 | 12.9 | 12.9 | 6.6 | [48] |
Hemp | 68 | 9 | 4.1 | - | - | [49] |
Hemp | 49.97 | 21.42 | 9.52 | 17.75 | 0.67 | [38] |
Rape straw | 53.06 | 18.13 | 9.63 | 17.68 | - | [38] |
Rape straw | 37.55 | 31.37 | 21.30 | 3.76 | 6.02 | [50] |
M 16 | 51.40 | 9.30 | 8.40 | 29.90 | 0.90 | |
S 16 | 53.20 | 15.00 | 10.5 | 20.90 | 0.40 | |
M 15 | 55.20 | 12.10 | 10.90 | 21.40 | 0.40 |
Origin | Dx (10) mm | Dx (50) mm | Dx (90) mm | Dust Content % |
---|---|---|---|---|
M16-10 | 0.87 | 1.32 | 4.38 | 4.1 |
M16-20 | 0.433 | 1.22 | 2.38 | 1.7 |
M16-20-Impact | 0.56 | 1.54 | 3.79 | 1.9 |
S16-20 | 0.86 | 2.25 | 4.75 | 0.9 |
S16-10 | 0.41 | 1.16 | 2.26 | 2.9 |
M15-20 | 0.92 | 2.04 | 4.349 | 0.4 |
M15-10 | 0.56 | 1.30 | 2.42 | 2.1 |
Origin | Density (kg/m3) | |
---|---|---|
Average | SD | |
M16-10 | 90.07 | 0.55 |
M16-20 | 70.24 | 2.90 |
M16-20-Impact | 66.35 | 2.87 |
S16-10 | 103.95 | 1.85 |
S16-20 | 75.84 | 1.12 |
M15-10 | 101.65 | 0.87 |
M15-20 | 69.29 | 2.52 |
ρ0 [kg.m−3] | ρs [kg.m−3] | n [%] | Length [mm] | ||
---|---|---|---|---|---|
Hemp shiv | 103 | 1465 | 92.9 | 1.25–20 | [53] |
Hemp shiv | 125 | 1259 | 90.7 | 8–15 | [30] |
Flax shiv | 90 | 1270 | 92.91 | 5–15 | [10] |
Rape straw | 130 | 1162 | 88.81 | 10–50 | [30] |
Hemp shiv | 130–87.89 | 1399 | 93.72 | 0–14 | [38] |
Flax shiv | 140–109.91 | 1321 | 90.17 | 0–14 | |
Rape straw | 100–78.71 | 1385 | 94.32 | 7–14 | |
Rape straw | 65 | - | 94 | - | [54] |
Rape straw | 65 | - | - | 0–35 | [55] |
Origin | Moisture Content % | |
---|---|---|
Average | SD | |
M16-10 | 13.01 | 0.23 |
M16-20 | 13.95 | 0.22 |
M16-20-Impact | 13.45 | 0.42 |
S16-20 | 5.23 | 0.88 |
S16-10 | 5.96 | 0.19 |
M15-20 | 5.80 | 0.33 |
M15-10 | 6.01 | 0.47 |
Type of Aggregate | Dry Density (Kg/m3) | Thermal Conductivity (W.m−1.K−1) |
---|---|---|
M15-20 | 608 | 0.083 |
518 | 0.078 | |
348 | 0.073 | |
M16-20 | 394 | 0.082 |
324 | 0.076 | |
S16-20 | 582 | 0.084 |
530 | 0.078 | |
518 | 0.077 | |
M15-10 | 502 | 0.074 |
333 | 0.071 | |
M16-10 | 365 | 0.076 |
315 | 0.074 | |
S16-10 | 491 | 0.073 |
482 | 0.071 | |
M16-20 Impact | 417 | 0.087 |
356 | 0.081 | |
M15-20 + S16-20 | 352 | 0.078 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajj Obeid, M.; Douzane, O.; Freitas Dutra, L.; Promis, G.; Laidoudi, B.; Bordet, F.; Langlet, T. Physical and Mechanical Properties of Rapeseed Straw Concrete. Materials 2022, 15, 8611. https://doi.org/10.3390/ma15238611
Hajj Obeid M, Douzane O, Freitas Dutra L, Promis G, Laidoudi B, Bordet F, Langlet T. Physical and Mechanical Properties of Rapeseed Straw Concrete. Materials. 2022; 15(23):8611. https://doi.org/10.3390/ma15238611
Chicago/Turabian StyleHajj Obeid, Maya, Omar Douzane, Lorena Freitas Dutra, Geoffrey Promis, Boubker Laidoudi, Florent Bordet, and Thierry Langlet. 2022. "Physical and Mechanical Properties of Rapeseed Straw Concrete" Materials 15, no. 23: 8611. https://doi.org/10.3390/ma15238611
APA StyleHajj Obeid, M., Douzane, O., Freitas Dutra, L., Promis, G., Laidoudi, B., Bordet, F., & Langlet, T. (2022). Physical and Mechanical Properties of Rapeseed Straw Concrete. Materials, 15(23), 8611. https://doi.org/10.3390/ma15238611