Metallurgical Coke Combustion with Different Reactivity under Nonisothermal Conditions: A Kinetic Study
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Experimental Device
3. Results and Discussion
3.1. Combustion Characteristics
3.2. Kinetic Analysis
3.2.1. Coats–Redfern Method
3.2.2. Equal Conversion Rate Method
4. Conclusions
- (1).
- With the increase in the heating rate, the ignition temperature and burnout temperature of the two cokes increased, the combustion time was shortened, the comprehensive combustion characteristic index increased, and the combustion characteristics were improved. Low-reactivity coke had better thermal stability and combustion characteristics.
- (2).
- With the increase in the heating rate, the activation energy of coke combustion obtained by the Coats–Redfern method gradually decreased, and the activation energy of L-Coke was about 4 kJ/mol more than that of H-Coke.
- (3).
- The activation energy calculated by the FWO method was higher than that calculated by the Vyazovkin method, but the laws obtained by the two methods were the same. The activation energy of L-Coke was about 8 kJ/mol higher than that of H-Coke.
- (4).
- The coke combustion kinetic parameters provide the basic data parameters for the numerical simulation of blast furnace pre-tuyere combustion and provide the basis for the application of high-reactivity coke in blast furnaces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johansson, M.T. Effects on global CO2 emissions when substituting LPG with bio-SNG as fuel in steel industry reheating furnaces—the impact of different perspectives on CO2 assessment. Energy Effic. 2016, 9, 1437–1445. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.L.; Xi, J.H.; Li, Z.P.; Zhang, W.L. A study on carbon emission peak forecast and emission reduction potential of China’s industrial sector. Stat. Inf. Forum. 2020, 35, 72–82. [Google Scholar]
- Bo, X.; Jia, M.; Xue, X.; Tang, L.; Mi, Z.; Wang, S.; Cui, W.; Chang, X.; Ruan, J.; Dong, G.; et al. Effect of strengthened standards on Chinese ironmaking and steelmaking emissions. Nat. Sustain. 2021, 4(9), 810–820. [Google Scholar] [CrossRef]
- Wickman, D.; Kokjohn, S.L. A computational investigation of the potential for non-sooting fuels to enable ultra-low NOx and CO2 emissions. Fuel 2018, 216, 648–664. [Google Scholar] [CrossRef]
- Nishioka, K.; Ujisawa, Y.; Tonomur, S. Sustainable Aspects of CO2 Ultimate Reduction in the Steelmaking Process (COURSE50 Project), Part 1: Hydrogen Reduction in the Blast Furnace. J. Sustain. Metall. 2016, 2, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Kurunov, I.F. Ways of Improving Blast Furnace Smelting Efficiency with Injection of Coal-Dust Fuel and Natural Gas. Metallurgist 2018, 61, 736–744. [Google Scholar] [CrossRef]
- Chu, M.; Nogami, H.; Yagi, J.I. Numerical Analysis on Injection of Hydrogen Bearing Materials into Blast Furnace. ISIJ Int. 2004, 44, 801–808. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Schenk, J.; Rantitsch, G.; Thaler, C.; Stocker, H. Effect of alkaline elements on the reactivity, strength and structural properties of blast furnace cokes. Metalurgija 2015, 54, 503–506. [Google Scholar]
- Bertling, H. Coal and Coke for Blast Furnaces. ISIJ Int. 1999, 39, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Sheng, H.; Bai, J.; Liu, Y. Abnormal process analysis of 1 080 m3 blast furnace of Xining Special Steel. J. Qinghai Univ. 2017, 35, 6. [Google Scholar]
- Liu, Q.H.; Yang, S.P.; Wang, C.; Song, L.; Huang, D. Effect of carbon solution-loss reaction on properties of coke in blast furnace. J. Iron Steel Res. Int. 2020, 27, 11. [Google Scholar] [CrossRef]
- George, H.L.; Monaghan, B.J.; Longbottom, R.J.; Chew, S.J.; Austin, P.R. Flow of Molten Slag through Coke Channels. ISIJ Int. 2013, 53, 1172–1179. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Liu, Z.; Chu, M.; Shi, Q.; Tang, J.; Han, D.; Cao, L. Influence of Temperature and CO2 on High-Temperature Behavior and Microstructure of Metallurgical Coke. ACS Omega 2021, 6, 19569–19577. [Google Scholar] [CrossRef]
- Liu, Z. Metallurgical Coke Gasification by Carbon Dioxide under Nonisothermal Conditions: A Kinetic Study. ACS Omega 2021, 6, 12432–12438. [Google Scholar] [CrossRef]
- Huang, J.; Lin, T.; Tie, W.; Li, Z.; Wang, Q.; Liu, Z. Transport Properties of CO2 in Different Reactivity Coke Solution Loss Reaction Based on Stefan Flow Theory. ACS Omega 2021, 5, 26817–26828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, J.; Guo, R.; Hou, C. Effects of microscopic characteristics on post-reaction strength of coke. Int. J. Coal Prep. Util. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Guo, R.; Duan, C.; Sun, Z.; Wang, J.-P.; Sun, X.-W.; Liang, Y.-H. Effect of pore structure and matrix reactivity on coke reactivity and post-reaction strength. Metall. Res. Technol. 2017, 114, 504. [Google Scholar] [CrossRef]
- Mas, N.; Akira, O.; Kazuyoshi, Y.; Yamaguchi, T.; Inoue, Y. Improvement of Blast Furnace Reaction Efficiency by Use of High Reactivity Coke. Tetsu Hagane 2009, 87, 357–364. [Google Scholar]
- Baba, S.; Hanaoka, K.; Igawa, K.; Kasaoka, S.; Sakamoto, S.; Sawada, T.; Shinohara, K.; Tsukihara, Y.; Yamauchi, Y. High reactivity and high strength coke for blast furnace and method for producing the same—ScienceDirect. Fuel Energy Abstr. 2002, 43, 128. [Google Scholar]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Jing, X.; Wang, Z.; Zhang, Q.; Fang, Y.-T. Combustion property and kinetics of fine chars derived from fluidized bed gasifier. J. Fuel Chem. Technol. 2014, 42, 13–19. [Google Scholar]
- Hu, R. Kinetics of Thermal Analysis, 2nd ed.; Science Press: Beijing, China, 2016. [Google Scholar]
- Sun, Y.; Sridhar, S.; Liu, L.; Wang, X.; Zhang, Z. Integration of coal gasification and waste heat recovery from high temperature steel slags: An emerging strategy to emission reduction. Sci. Rep. 2015, 5, 16591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, L.; Qing, B.; Lei, W. Kinetics of CO2/Coal Gasification in Molten Blast Furnace Slag. Ind. Eng. Chem. Res. 2012, 51, 15872–15883. [Google Scholar]
- Peng, L.; Yu, Q.; Xie, H.; Wang, K. CO2 Gasification Rate Analysis of Datong Coal Using Slag Granules as Heat Carrier for Heat Recovery from Blast Furnace Slag by Using a Chemical Reaction. Energy Fuels 2013, 27, 4810–4817. [Google Scholar]
- Tanaka, H. Thermal analysis and kinetics of solid-state reactions. Thermochem. Acta 1995, 267, 29–44. [Google Scholar] [CrossRef]
- Irfan, M.; Usman, M.; Kusakabe, K. Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review. Energy 2011, 36, 12–40. [Google Scholar] [CrossRef]
- Raza, M.; Abu, B.; Al-Mar, A.; Inayat, A. Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renew. Energy 2022, 183, 67–77. [Google Scholar] [CrossRef]
- Nasution, P.S.; Jung, J.-W.; Oh, K.; Koh, H.L. Coke combustion kinetics of spent Pt-Sn/Al2O3 catalysts in propane dehydrogenation. Korean J. Chem. Eng. 2020, 37, 1490–1497. [Google Scholar] [CrossRef]
- Silva, B.J.B.; Sousa, L.V.; Sarmento, L.R.A.; Melo, A.C.S.; Silva, D.S.; Quintela, P.H.L.; Alencar, S.L.; Silva, A.O.S. Effect of coke deposition over microporous and hierarchical ZSM-23 zeolite. J. Therm. Anal. Calorim. 2021, 3, 1–10. [Google Scholar] [CrossRef]
Sample | Proximate Analysis | Ultimate Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Vad | Ad | FCd | C | H | O | N | S | |
L-Coke | 0.92 | 1.32 | 12.80 | 84.96 | 86.32 | 0.45 | 0.88 | 1.87 | 0.48 |
H-Coke | 0.68 | 1.18 | 11.66 | 86.48 | 87.68 | 0.28 | 0.62 | 1.06 | 0.36 |
Sample | β (°C/min) | Ti (°C) | Tb (°C) | vmax (%/min) | vmesn (%/min) | S × 108 (min−2/°C3) |
---|---|---|---|---|---|---|
L-Coke | 5 | 633.56 | 815.52 | 3.88 | 0.50 | 0.59 |
10 | 651.99 | 852.28 | 6.58 | 1.09 | 1.98 | |
15 | 686.00 | 902.55 | 6.91 | 1.38 | 2.28 | |
20 | 698.41 | 988.25 | 6.29 | 1.75 | 2.25 | |
H-Coke | 5 | 611.64 | 793.55 | 3.42 | 0.50 | 0.58 |
10 | 650.33 | 841.72 | 5.41 | 0.96 | 1.46 | |
15 | 668.27 | 891.03 | 6.47 | 1.52 | 2.47 | |
20 | 684.11 | 998.68 | 5.91 | 1.73 | 2.19 |
No. | Reaction Mechanism | g(α) | G(α) |
---|---|---|---|
A1 | Avrami–Erofeev, (m = 1) | 1 − α | − ln(1 − α) |
A2 | Avrami–Erofeev, (m = 2) | 2(1 − α) [− ln(1 − α)]1/2 | [− ln(1− α)]1/2 |
A3 | Avrami–Erofeev, (m = 3) | 3(1 − α) [− ln(1 − α)]2/3 | [− ln(1− α)]1/3 |
A4 | Avrami–Erofeev, (m = 4) | 4(1 − α) [− ln(1 − α)]3/4 | [− ln(1− α)]1/4 |
S1 | Shrinking core, (m = 1/2) | 1/2 (1 −α) −1 | 1−(1 − α)2 |
S2 | Shrinking core, (m = 1/3) | 1/3 (1 −α)−2 | 1−(1 − α)3 |
S3 | Shrinking core, (m = 1/4) | 1/4 (1 − α)−3 | 1−(1 − α)4 |
S4 | Shrinking core, (m = 2) | 2 (1 − α)1/2 | 1 − (1 − α)1/2 |
S5 | Shrinking core, (m = 3) | 3 (1 − α)2/3 | 1 − (1 − α)1/3 |
D1 | One-dimensional | 1/2α−1 | α2 |
D2 | Two-dimensional | [−ln(1 − α)]−1 | α + (1 − α) ln(1 − α) |
D3 | Three-dimensional | 3/2(1 − α)2/3[1 − (1 − α)1/3]−1 | [1 − (1 − α)1/3]2 |
D4 | Three-dimensional | 3/2[(1 − α)−1/3 − 1]−1 | 1 − 2/3α − (1 − α)2/3 |
D5 | 3-D (anti-Jander) | 3/2(1 + α)2/3[(1 + α)1/3 − 1]−1 | [(1 + α)1/3 − 1]2 |
D6 | 3-D (ZLT) | 3/2(1 − α)4/3[(1 − α)1/3 − 1]−1 | [(1 − α)−1/3 − 1]2 |
D7 | 3-D (Jander) | 6(1 − α)2/3[1 − (1 − α)1/3]1/2 | [1−(1 − α)1/3]1/2 |
D8 | 2-D (Jander) | (1 − α)1/2[1 − (1 − α)1/2]2 | [1 − (1 − α)1/2]2 |
C1 | Chemical reaction, (n = 2) | (1 − α)2 | (1 − α)−1 − 1 |
C2 | Chemical reaction, (n = 3/2) | (1 − α)2/3 | (1 − α)−1/2 − 1 |
Sample | β/(°C/min) | T/°C | Ea/(kJ/mol) | A/(min−1) | R2 |
---|---|---|---|---|---|
L-Coke | 5 | 633.56~707.42 | 266.1568 | 7.69 × 109 | 0.9953 |
707.43~815.52 | 148.4800 | 2.79 × 106 | 0.9972 | ||
10 | 651.99~739.28 | 264.1843 | 3.83 × 109 | 0.9974 | |
739.29~852.28 | 149.4101 | 3.22 × 106 | 0.9999 | ||
15 | 686.00~773.18 | 258.7578 | 2.33 × 108 | 0.9904 | |
773.19~902.55 | 113.0397 | 2.97 × 105 | 0.9998 | ||
20 | 698.41~809.36 | 207.9613 | 4.02 × 106 | 0.9970 | |
809.37~988.25 | 72.4484 | 1.90 × 103 | 0.9994 | ||
H-Coke | 5 | 611.64~692.51 | 265.7327 | 5.56 × 109 | 0.9982 |
692.52~793.55 | 137.7137 | 1.97 × 106 | 0.9998 | ||
10 | 650.33~728.79 | 262.9306 | 2.90 × 109 | 0.9993 | |
728.80~841.72 | 125.0834 | 1.80 × 106 | 0.9998 | ||
15 | 668.27~758.68 | 256.4894 | 2.18 × 108 | 0.9965 | |
758.69~891.03 | 103.0143 | 1.04 × 105 | 0.9998 | ||
20 | 684.11~799.82 | 194.6635 | 4.92 × 106 | 0.9973 | |
799.83~998.68 | 71.4838 | 1.71 × 103 | 0.9997 |
Sample | α | FWO | Vyazovkin | ||
---|---|---|---|---|---|
E/(kJ·mol−1) | R2 | E/kJ·mol−1 | R2 | ||
L-Coke | 0.1 | 123.6115 | 0.9959 | 119.8789 | 0.9946 |
0.2 | 99.8798 | 0.9977 | 92.7443 | 0.9966 | |
0.3 | 84.8729 | 0.9906 | 75.6199 | 0.9850 | |
0.4 | 73.8716 | 0.9875 | 62.9981 | 0.9781 | |
0.5 | 65.3441 | 0.9845 | 53.1409 | 0.9700 | |
0.6 | 58.5082 | 0.9839 | 45.1669 | 0.9652 | |
0.7 | 53.2430 | 0.9821 | 38.9299 | 0.9565 | |
0.8 | 49.6779 | 0.9821 | 34.5463 | 0.9516 | |
Average (0.1 ~ 0.4) | 95.5590 | 87.8103 | |||
H-Coke | 0.1 | 111.2866 | 0.9948 | 106.0545 | 0.9931 |
0.2 | 99.5973 | 0.9855 | 92.6350 | 0.9791 | |
0.3 | 83.0341 | 0.9739 | 73.7578 | 0.9592 | |
0.4 | 72.1295 | 0.9703 | 61.2059 | 0.9492 | |
0.5 | 64.2675 | 0.9676 | 52.0476 | 0.9390 | |
0.6 | 57.5258 | 0.9626 | 44.1193 | 0.9221 | |
0.7 | 52.2322 | 0.9575 | 37.7875 | 0.9013 | |
0.8 | 48.1042 | 0.9536 | 32.7296 | 0.8798 | |
Average (0.1 ~ 0.4) | 91.5119 | 83.4133 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Ling, Q.; He, W.; Hu, J.; Li, X. Metallurgical Coke Combustion with Different Reactivity under Nonisothermal Conditions: A Kinetic Study. Materials 2022, 15, 987. https://doi.org/10.3390/ma15030987
Qin Y, Ling Q, He W, Hu J, Li X. Metallurgical Coke Combustion with Different Reactivity under Nonisothermal Conditions: A Kinetic Study. Materials. 2022; 15(3):987. https://doi.org/10.3390/ma15030987
Chicago/Turabian StyleQin, Yuelin, Qingfeng Ling, Wenchao He, Jinglan Hu, and Xin Li. 2022. "Metallurgical Coke Combustion with Different Reactivity under Nonisothermal Conditions: A Kinetic Study" Materials 15, no. 3: 987. https://doi.org/10.3390/ma15030987
APA StyleQin, Y., Ling, Q., He, W., Hu, J., & Li, X. (2022). Metallurgical Coke Combustion with Different Reactivity under Nonisothermal Conditions: A Kinetic Study. Materials, 15(3), 987. https://doi.org/10.3390/ma15030987