High-Selective Extraction of Scandium (Sc) from Bauxite Residue (Red Mud) by Acid Leaching with MgSO4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Analysis
2.3. Experimental
3. Results and Discussion
3.1. Red Mud Characterization
3.2. Leaching with MgSO4
3.3. Kinetics Study of Sc Leaching with MgSO4
3.4. Solid Residue Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaußen, F.M.; Friedrich, B. Methods for Alkaline Recovery of Aluminum from Bauxite Residue. J. Sustain. Met. 2016, 2, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Chen, J.; Zhang, Y.; Peng, D.; Huang, T.; Sun, C. pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud. Int. J. Environ. Res. Public Health 2019, 16, 2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Power, G.; Gräfe, M.; Klauber, C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 2011, 108, 33–45. [Google Scholar] [CrossRef]
- Akcil, A.; Akhmadiyeva, N.; Abdulvaliyev, R.; Abhilash; Meshram, P. Overview on Extraction and Separation of Rare Earth Elements from Red Mud: Focus on Scandium. Miner. Process. Extr. Met. Rev. 2018, 39, 145–151. [Google Scholar] [CrossRef]
- Reid, S.; Tam, J.; Yang, M.; Azimi, G. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment. Sci. Rep. 2017, 7, 15252. [Google Scholar] [CrossRef] [Green Version]
- Salman, A.D.; Juzsakova, T.; Rédey, Á.; Le, P.-C.; Nguyen, X.C.; Domokos, E.; Abdullah, T.A.; Vagvolgyi, V.; Chang, S.W.; Nguyen, D.D. Enhancing the Recovery of Rare Earth Elements from Red Mud. Chem. Eng. Technol. 2021, 44, 1768–1774. [Google Scholar] [CrossRef]
- Singh, U.; Thawrani, S.A.; Ansari, M.S.; Puttewar, S.P.; Agnihotri, A. Studies on Beneficiation and Leaching Characteristics of Rare Earth Elements in Indian Red Mud. Russ. J. Non-Ferr. Met. 2019, 60, 335–340. [Google Scholar] [CrossRef]
- Zhang, N.; Li, H.-X.; Cheng, H.-J.; Liu, X.-M. Electron probe microanalysis for revealing occurrence mode of scandium in Bayer red mud. Rare Met. 2017, 36, 295–303. [Google Scholar] [CrossRef]
- Zhu, X.; Li, W.; Xing, B.; Zhang, Y. Extraction of scandium from red mud by acid leaching with CaF2 and solvent extraction with P507. J. Rare Earths 2020, 38, 1003–1008. [Google Scholar] [CrossRef]
- Borra, C.R.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Leaching of rare earths from bauxite residue (red mud). Miner. Eng. 2015, 76, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Zinoveev, D.; Pasechnik, L.; Fedotov, M.; Dyubanov, V.; Grudinsky, P.; Alpatov, A. Extraction of Valuable Elements from Red Mud with a Focus on Using Liquid Media—A Review. Recycling 2021, 6, 38. [Google Scholar] [CrossRef]
- Liu, Y.; Naidu, R. Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag. 2014, 34, 2662–2673. [Google Scholar] [CrossRef] [PubMed]
- Rivera, R.M.; Ounoughene, G.; Borra, C.R.; Binnemans, K.; Van Gerven, T. Neutralisation of bauxite residue by carbon dioxide prior to acidic leaching for metal recovery. Miner. Eng. 2017, 112, 92–102. [Google Scholar] [CrossRef]
- Shoppert, A.; Loginova, I.; Napol’Skikh, J.; Kyrchikov, A.; Chaikin, L.; Rogozhnikov, D.; Valeev, D. Selective Scandium (Sc) Extraction from Bauxite Residue (Red Mud) Obtained by Alkali Fusion-Leaching Method. Materials 2022, 15, 433. [Google Scholar] [CrossRef] [PubMed]
- Anawati, J.; Azimi, G. Recovery of scandium from Canadian bauxite residue utilizing acid baking followed by water leaching. Waste Manag. 2019, 95, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Alkan, G.; Schier, C.; Gronen, L.; Stopic, S.; Friedrich, B. A Mineralogical Assessment on Residues after Acidic Leaching of Bauxite Residue (Red Mud) for Titanium Recovery. Metals 2017, 7, 458. [Google Scholar] [CrossRef] [Green Version]
- Ochsenkuehn-Petropoulou, M.; Tsakanika, L.-A.; Lymperopoulou, T.; Ochsenkuehn, K.-M.; Hatzilyberis, K.; Georgiou, P.; Stergiopoulos, C.; Serifi, O.; Tsopelas, F. Efficiency of Sulfuric Acid on Selective Scandium Leachability from Bauxite Residue. Metals 2018, 8, 915. [Google Scholar] [CrossRef] [Green Version]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Recovery of Rare Earths and Other Valuable Metals from Bauxite Residue (Red Mud): A Review. J. Sustain. Metall. 2016, 2, 365–386. [Google Scholar] [CrossRef]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery. J. Sustain. Metall. 2016, 2, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Alkan, G.; Yagmurlu, B.; Gronen, L.; Dittrich, C.; Ma, Y.; Stopic, S.; Friedrich, B. Selective silica gel free scandium extraction from Iron-depleted red mud slags by dry digestion. Hydrometallurgy 2019, 185, 266–272. [Google Scholar] [CrossRef]
- Zhou, K.; Teng, C.; Zhang, X.; Peng, C.; Chen, W. Enhanced selective leaching of scandium from red mud. Hydrometallurgy 2018, 182, 57–63. [Google Scholar] [CrossRef]
- Hatzilyberis, K.; Lymperopoulou, T.; Tsakanika, L.-A.; Ochsenkühn, K.-M.; Georgiou, P.; Defteraios, N.; Tsopelas, F.; Ochsenkühn-Petropoulou, M. Process Design Aspects for Scandium-Selective Leaching of Bauxite Residue with Sulfuric Acid. Minerals 2018, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Rivera, R.M.; Ounoughene, G.; Malfliet, A.; Vind, J.; Panias, D.; Vassiliadou, V.; Binnemans, K.; Van Gerven, T. A Study of the Occurrence of Selected Rare-Earth Elements in Neutralized–Leached Bauxite Residue and Comparison with Untreated Bauxite Residue. J. Sustain. Metall. 2019, 5, 57–68. [Google Scholar] [CrossRef]
- Anawati, J.; Azimi, G. Recovery of strategic materials from Canadian bauxite residue by smelting followed by acid baking–water leaching. In Rare Metal Technology 2020; Azimi, G., Forsberg, K., Ouchi, T., Kim, H., Alam, S., Baba, A.A., Eds.; The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2020; pp. 139–150. ISBN 978-3-030-36757-2. [Google Scholar]
- Ochsenkühn-Petropulu, M.; Lyberopulu, T.; Parissakis, G. Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Anal. Chim. Acta 1995, 315, 231–237. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, Y.-Y.; Feng, Z.-Y.; Huang, X.-W.; Huang, L.; Long, Z.-Q.; Cui, D.-L. Leaching characteristics of ion-adsorption type rare earths ore with magnesium sulfate. Trans. Nonferr. Met. Soc. China 2015, 25, 3784–3790. [Google Scholar] [CrossRef]
- Yanfei, X.; Zongyu, F.; Xiao, Y.; Li, H.; Yingying, C.; Liangshi, W.; Zhiqi, L. Recovery of rare earths from weathered crust elution-deposited rare earth ore without ammonia-nitrogen pollution: I. Leaching with magnesium sulfate. Hydrometallurgy 2015, 153, 58–65. [Google Scholar] [CrossRef]
- Chaikin, L.; Shoppert, A.; Valeev, D.; Loginova, I.; Napol’Skikh, J. Concentration of Rare Earth Elements (Sc, Y, La, Ce, Nd, Sm) in Bauxite Residue (Red Mud) Obtained by Water and Alkali Leaching of Bauxite Sintering Dust. Minerals 2020, 10, 500. [Google Scholar] [CrossRef]
- Angelopoulos, P.; Georgiou, M.; Oustadakis, P.; Taxiarchou, M.; Karadağ, H.; Eker, Y.; Dobra, G.; Boiangiu, A.; Demir, G.; Arslan, S.; et al. Preliminary Characterization of Three Metallurgical Bauxite Residue Samples. Mater. Proc. 2021, 5, 66. [Google Scholar] [CrossRef]
- Loginova, I.V.; Shoppert, A.; Kryuchkov, E.Y. Kinetics investigation and optimal parameters of alumina extraction during the Middle Timan bauxites leaching. Tsvetnye Met. 2018, 63–68. [Google Scholar] [CrossRef]
- Loginova, I.V.; Shoppert, A.A.; Chaikin, L.I. Effect of Adding Sintering Furnace Electrostatic Precipitator Dust on Combined Leaching of Bauxites and Cakes. Metallurgist 2015, 59, 698–704. [Google Scholar] [CrossRef]
- Pyagai, I.N.; Pasechnik, L.; Yatsenko, A.S.; Skachkov, V.M.; Yatsenko, S.P. Recovery of sludge from alumina production. Russ. J. Appl. Chem. 2012, 85, 1649–1653. [Google Scholar] [CrossRef]
- Petrakova, O.V.; Panov, A.V.; Gorbachev, S.N.; Klimentenok, G.N.; Perestoronin, A.V.; Vishnyakov, S.E.; Anashkin, V.S. Improved efficiency of red mud processing through scandium oxide recovery. In Light Metals 2015; Wiley: Hoboken, NJ, USA, 2015; pp. 91–96. [Google Scholar]
- Petrakova, O.V.; Kozyrev, A.B.; Suss, A.G.; Gorbachev, S.N.; Panov, A.V. Improved technology of scandium recovery from solutions of bauxite residue carbonation leaching. In Proceedings of the International Conference on Martensitic Transformations, Chicago, IL, USA, 9–14 July 2017; pp. 1407–1413. [Google Scholar]
- Lin, P.; Yang, X.; Werner, J.; Honaker, R. Application of Eh-pH Diagrams on Acid Leaching Systems for the Recovery of REEs from Bastnaesite, Monazite and Xenotime. Metals 2021, 11, 734. [Google Scholar] [CrossRef]
- Rivera, R.M.; Xakalashe, B.; Ounoughene, G.; Binnemans, K.; Friedrich, B.; Van Gerven, T. Selective rare earth element extraction using high-pressure acid leaching of slags arising from the smelting of bauxite residue. Hydrometallurgy 2019, 184, 162–174. [Google Scholar] [CrossRef]
- Zhang, W.; Noble, A.; Yang, X.; Honaker, R. A Comprehensive Review of Rare Earth Elements Recovery from Coal-Related Materials. Minerals 2020, 10, 451. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley: New York, NY, USA, 1999; ISBN 978-0-471-25424-9. [Google Scholar]
- Valeev, D.; Pankratov, D.; Shoppert, A.; Sokolov, A.; Kasikov, A.; Mikhailova, A.; Salazar-Concha, C.; Rodionov, I. Mechanism and kinetics of iron extraction from high silica boehmite–kaolinite bauxite by hydrochloric acid leaching. Trans. Nonferr. Met. Soc. China 2021, 31, 3128–3149. [Google Scholar] [CrossRef]
- Boyarintsev, A.V.; Aung, H.Y.; Stepanov, S.I.; Shoustikov, A.A.; Ivanov, P.I.; Giganov, V.G. Evaluation of Main Factors for Improvement of the Scandium Leaching Process from Russian Bauxite Residue (Red Mud) in Carbonate Media. ACS Omega 2022, 7, 259–273. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Qiu, J.; Rao, M.; Xiao, Y. Leaching Behaviors of Calcium and Aluminum from an Ionic Type Rare Earth Ore Using MgSO4 as Leaching Agent. Minerals 2021, 11, 716. [Google Scholar] [CrossRef]
Phase | Content, wt.% |
---|---|
Hematite | 56.3 |
Katoite | 18.5 |
Cancrinite | 12.6 |
Chamosite | 6.9 |
Lepidocrocite | 5.7 |
Compounds | Fe2O3 | SiO2 | CaO | Al2O3 | TiO2 | Na2O | CO2 | K2O | MgO | MnO | SO3 | P2O5 | LOI 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Content, wt.% | 58.30 | 9.26 | 9.01 | 7.79 | 2.97 | 3.41 | 2.27 | 0.95 | 0.54 | 0.24 | 0.19 | 0.13 | 4.62 |
Element | Sc | Y | La | Ce | Pr | Nd | Nb | Sm |
---|---|---|---|---|---|---|---|---|
Content, mg kg−1 | 240 | 557 | 614 | 1058 | 183 | 615 | 264 | 109 |
Element | pH 2 | pH 4 | pH 6 |
---|---|---|---|
Na | 2706.0 | 2755.0 | 2381.3 |
K | 517.3 | 439.4 | 281.3 |
Ca | 2026.7 | 1668.8 | 1694.8 |
Al | 2401.3 | 360.5 | 341.3 |
Fe | 4500.7 | 19.9 | 14.6 |
Si | 3373.3 | 914.4 | 286.3 |
Ti | 466.7 | 3.1 | 2.6 |
Mn | 200.0 | 125.0 | 51.8 |
Li | 33.0 | 24.0 | 20.1 |
Co | 10.0 | 4.4 | 1.3 |
Ni | 26.7 | 13.8 | 9.7 |
Cu | 26.0 | 9.4 | 3.2 |
Zn | 120.0 | 112.5 | 88.1 |
Cd | 86.7 | 81.3 | 15.5 |
Pb | 100.0 | 50.0 | 0.5 |
Ga | 9.8 | 0.7 | 0.2 |
Sc | 19.5 | 15.2 | 0.6 |
Y | 24.4 | 17.2 | 2.0 |
Nb | 1.7 | 0.2 | 0.1 |
La | 44.0 | 37.1 | 8.3 |
Ce | 66.7 | 50.0 | 5.5 |
Pr | 12.2 | 6.9 | 1.1 |
Nd | 42.7 | 25.2 | 3.4 |
Sm | 7.3 | 4.6 | 0.4 |
Th | 6.1 | 0.1 | 0.1 |
U | 0.8 | 0.4 | 0.2 |
SCM Equation | R2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Temperature, °C | CMgSO4, g L−1 | ||||||||||
2 | 3 | 4 | 5 | 40 | 50 | 60 | 70 | 80 | 12 | 24 | 36 | |
Equation (2) | 0.930 | 0.962 | 0.978 | 0.991 | 0.972 | 0.970 | 0.962 | 0.954 | 0.940 | 0.981 | 0.962 | 0.954 |
Equation (3) | 0.988 | 0.965 | 0.912 | 0.889 | 0.935 | 0.942 | 0.965 | 0.965 | 0.985 | 0.876 | 0.965 | 0.964 |
Equation (4) | 0.915 | 0.954 | 0.977 | 0.988 | 0.957 | 0.963 | 0.954 | 0.946 | 0.920 | 0.980 | 0.954 | 0.945 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoppert, A.; Loginova, I.; Napol’skikh, J.; Valeev, D. High-Selective Extraction of Scandium (Sc) from Bauxite Residue (Red Mud) by Acid Leaching with MgSO4. Materials 2022, 15, 1343. https://doi.org/10.3390/ma15041343
Shoppert A, Loginova I, Napol’skikh J, Valeev D. High-Selective Extraction of Scandium (Sc) from Bauxite Residue (Red Mud) by Acid Leaching with MgSO4. Materials. 2022; 15(4):1343. https://doi.org/10.3390/ma15041343
Chicago/Turabian StyleShoppert, Andrei, Irina Loginova, Julia Napol’skikh, and Dmitry Valeev. 2022. "High-Selective Extraction of Scandium (Sc) from Bauxite Residue (Red Mud) by Acid Leaching with MgSO4" Materials 15, no. 4: 1343. https://doi.org/10.3390/ma15041343
APA StyleShoppert, A., Loginova, I., Napol’skikh, J., & Valeev, D. (2022). High-Selective Extraction of Scandium (Sc) from Bauxite Residue (Red Mud) by Acid Leaching with MgSO4. Materials, 15(4), 1343. https://doi.org/10.3390/ma15041343