Contribution of Interfacial Bonding towards Geopolymers Properties in Geopolymers Reinforced Fibers: A Review
Abstract
:1. Introduction
2. Fibers
2.1. Fiber Types and Properties
2.2. Numerical Simulations
3. Effect of Fibers on the Geopolymers Composite
3.1. Comparison Result for the Single Fibers with Different Material, Shape and Dimension
3.1.1. Mixture Design
3.1.2. Sample Preparation and Curing Time
3.1.3. Result and Discussion
3.2. Comparison Results of the Hybrid Fibers with Different Material, Shape, and Dimension
3.3. Comparison of Interfacial Bonding between Matrix and Fibers Due to Type of the Materials
4. Summary and Future Works
- More study on the shape of the fiber is required as most fibers are round in shape. Creating new shapes such as diamonds and rectangles will result in a different outcome.
- Modification or chemical treatment of fibers surface which has hydrophobic properties.
- Further investigation on sustaining the properties of geopolymers reinforced fibers at different temperatures.
- Studies on hybrid fibers have yielded positive results, primarily with steel and polymers or a combination of two types of fibers, but more work is needed with other materials and combinations of more than two fibers.
- The geopolymer properties need to be observed based on the mechanical and physical properties depending on the desired application, such as lightweight, green product, low cost, and high impact.
- Research on the thermal conductivity of geopolymer-reinforced fibers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, K.; Song, J.; Song, K. Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 2013, 39, 265–272. [Google Scholar] [CrossRef]
- Al-mashhadani, M.M.; Canpolat, O.; Aygörmez, Y.; Uysal, M. Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Constr. Build. Mater. 2018, 167, 505–513. [Google Scholar] [CrossRef]
- Sani, M.F.A.A.; Muhamad, R.; Abdulrahman, H. Bond stress-slip of fly ash-based geopolymer concrete: A review Bond Stress-Slip of Fly Ash-Based Geopolymer Concrete: A Review. AIP Conf. Proc. 2020, 2284, 020004. [Google Scholar]
- Report, Making Concrete Change Innovation in Low-Carbon Cement and Concrete. Available online: https://www.chathamhouse.org/2018/06/making-concrete-change-innovation-low-carbon-cement-and-concrete (accessed on 1 December 2021).
- Sukontasukkul, P.; Pongsopha, P.; Chindaprasirt, P.; Songpiriyakij, S. Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. For conventional concrete, to improve the britt. Constr. Build. Mater. 2018, 161, 37–44. [Google Scholar] [CrossRef]
- Alvee, A.R.; Malinda, R.; Akbar, A.M.; Ashar, R.D.; Rahmawati, C.; Alomayri, T.; Raza, A.; Shaikh, F.U. Experimental study of the mechanical properties and microstructure of geopolymer paste containing nano-silica from agricultural waste and crystalline admixtures. Case Stud. Constr. Mater. 2022, 16, e00792. [Google Scholar] [CrossRef]
- Wang, Y.; Chan, C.L.; Leong, S.H.; Zhang, M. Engineering properties of strain hardening geopolymer composites with hybrid polyvinyl alcohol and recycled steel fibres. Constr. Build. Mater. 2020, 261, 120585. [Google Scholar] [CrossRef]
- Rashid, K.; Li, X.; Xie, Y.; Deng, J.; Zhang, F. Cracking behavior of geopolymer concrete beams reinforced with steel and fiber reinforced polymer bars under flexural load. Compos. Part B Eng. 2020, 186, 107777. [Google Scholar] [CrossRef]
- Alzeebaree, R.; Çevik, A.; Nematollahi, B.; Sanjayan, J. Mechanical properties and durability of unconfined and confined geopolymer concrete with fiber reinforced polymers exposed to sulfuric acid. Constr. Build. Mater. 2019, 215, 1015–1032. [Google Scholar] [CrossRef]
- Mohseni, E. Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites. Constr. Build. Mater. 2018, 186, 904–911. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Davidovits, J. Chemistry of geopolymeric systems, terminology. Geopolymer Int. Conf. 1999, 9–40. [Google Scholar]
- Lazorenko, G.; Kasprzhitskii, A.; Yavna, V.; Mischinenko, V.; Kukharskii, A.; Kruglikov, A. Environmental Technology & Innovation Effect of pre-treatment of flax tows on mechanical properties and microstructure of natural fiber reinforced geopolymer composites. Environ. Technol. Innov. 2020, 20, 101105. [Google Scholar]
- Zaheer, M.; Khan, N.; Shaikh, A.; Hao, Y.; Hao, H. Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Constr. Build. Mater. 2016, 125, 809–820. [Google Scholar]
- Singh, B.; Rahman, M.R.; Paswan, R.; Bhattacharyya, S.K. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Constr. Build. Mater. 2016, 118, 171–179. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Elmoaty, A.; Elmoaty, M.A.; Salem, H.A. Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016, 123, 581–593. [Google Scholar] [CrossRef]
- Abdollahnejad, Z.; Pacheco-torgal, F.; Félix, T.; Tahri, W.; Aguiar, J.B. Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr. Build. Mater. 2020, 80, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Komljenovic, M.; Bašc, Z.; Marjanovic, N. The influence of fly ash characteristics and reaction conditions on strength and structure of geopolymers. Constr. Build. Mater. 2015, 94, 361–370. [Google Scholar]
- Liew, Y.M.; Kamarudin, H.; Al Bakri, A.M.; Luqman, M.; Nizar, I.K.; Ruzaidi, C.M.; Heah, C.Y. Processing and characterization of calcined kaolin cement powder. Constr. Build. Mater. 2012, 30, 794–802. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R. Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. Constr. Build. Mater. 2020, 258, 119697. [Google Scholar] [CrossRef]
- Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Metselaar, H.S.C.; Jumaat, M.Z. Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos. Sci. Technol. 2016, 122, 73–81. [Google Scholar] [CrossRef]
- Bahador, A.; Esparham, A.; Jamshidi, M. Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Constr. Build. Mater. 2020, 251, 118965. [Google Scholar]
- Uddin, F.; Shaikh, A. Tensile and flexural behaviour of recycled polyethylene terephthalate (PET) fibre reinforced geopolymer composites. Constr. Build. Mater. 2020, 245, 118438. [Google Scholar]
- Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U.J.; Zamin, M. Cement and Concrete Research Graphene nanoplatelet-fly ash based geopolymer composites. Cem. Concr. Res. 2015, 76, 222–231. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Wang, Y.; Feng, J. Preparation and properties of alkali activated metakaolin-based geopolymer. Materials 2016, 9, 767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, J.; Jang, C.; Lee, S.; Lee, S.; Kim, H. Long-term performance of recycled PET fibre-reinforced cement composites. Constr. Build. Mater. 2010, 24, 660–665. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, T.; Zheng, X.; Liu, Y.; Darkwa, J.; Zhou, G. Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Constr. Build. Mater. 2020, 251, 118960. [Google Scholar] [CrossRef]
- Maranan, G.B.; Manalo, A.C.; Benmokrane, B.; Karunasena, W.; Mendis, P. Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars. Eng. Struct. 2016, 117, 422–436. [Google Scholar] [CrossRef]
- Rebouillat, S.; Letellier, B.; Ste, B. Wettability of single fibres–beyond the contact angle approach. Int. J. Adhes. Adhes. 1999, 19, 303–314. [Google Scholar] [CrossRef]
- Carroll, B.J. The Accurate Measurement of Contact Angle, Phase Contact Areas, Drop Volume, and Laplace Excess Pressure in Drop-on-Fiber Systems. J. Colloid Interface Sci. 1976, 57, 488–495. [Google Scholar] [CrossRef]
- Celik, A.; Yilmaz, K.; Canpolat, O.; Al-mashhadani, M.M.; Aygörmez, Y.; Uysal, M. High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Constr. Build. Mater. 2018, 187, 1190–1203. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Y.; Xu, F.; Song, X.; Ye, J.; Duan, P.; Zhang, Z. Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Compos. Part B 2020, 183, 107689. [Google Scholar] [CrossRef]
- Asrani, N.P.; Murali, G.; Parthiban, K.; Surya, K.; Prakash, A.; Rathika, K.; Chandru, U. A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: Experiments and modelling. Constr. Build. Mater. 2019, 203, 56–68. [Google Scholar] [CrossRef]
- Ganesan, N.; Abraham, R.; Raj, S.D. Durability characteristics of steel fibre reinforced geopolymer concrete. Constr. Build. Mater. 2015, 93, 471–476. [Google Scholar] [CrossRef]
- Environment, U.N.; Scrivener, K.L.; John, V.M.; Gartner, E.M. Cement and Concrete Research Eco efficientcements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar]
- Mastali, M.; Dalvand, A.; Sattarifard, A.R.; Abdollahnejad, Z.; Illikainen, M. Characterization and optimization of hardened properties of self- consolidating concrete incorporating recycled steel, industrial steel, polypropylene and hybrid fibres. Compos. Part B 2018, 151, 186–200. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Behnia, A.; Pordsari, A.J. A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer. PLoS ONE 2016, 11, e0147546. [Google Scholar] [CrossRef] [Green Version]
- Bhutta, A.; Borges, P.H.R.; Zanotti, C.; Farooq, M.; Banthia, N. Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cem. Concr. Compos. 2017, 80, 31–40. [Google Scholar] [CrossRef]
- Wang, R.; Gao, X.; Zhang, J.; Han, G. Spatial distribution of steel fibers and air bubbles in UHPC cylinder determined by X-ray CT method. Constr. Build. Mater. 2018, 160, 39–47. [Google Scholar] [CrossRef]
- Al-majidi, M.H.; Lampropoulos, A.; Cundy, A.B. Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties. Constr. Build. Mater. 2017, 139, 286–307. [Google Scholar] [CrossRef] [Green Version]
- Olivito, R.S.; Zuccarello, F.A. Composites: Part B An experimental study on the tensile strength of steel fiber reinforced concrete. Compos. Part B 2010, 41, 246–255. [Google Scholar] [CrossRef]
- Hui, X.; Jacobsen, S.; Ying, J.; Liang, Z.; Foon, S.; Lea, H. Cement and Concrete Research Application of nanoindentation testing to study of the interfacial transition zone in steel fibres reinforced mortar. Cem. Concr. Res. 2009, 39, 701–715. [Google Scholar]
- Granju, J.; Balouch, S.U. Corrosion of steel fibre reinforced concrete from the cracks. Cem. Concr. Res. 2005, 35, 572–577. [Google Scholar] [CrossRef]
- Frazão, C.; Camões, A.; Barros, J.; Gonçalves, D. Durability of steel fiber reinforced self-compacting concrete. Constr. Build. Mater. 2015, 80, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Hosking, N.C.; Shipway, P.H.; Rudd, C.D. Corrosion resistance of zinc—Magnesium coated steel. Corros. Sci. 2007, 49, 3669–3695. [Google Scholar] [CrossRef]
- Siddique, R.; Khatib, J.; Kaur, I. Use of recycled plastic in concrete: A review. Waste Manag. 2008, 28, 1835–1852. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y. Investigation of Polymorphism for Amorphous and Semi-Crystalline Poly (-Ethylene Terephthalate-) Using High-Pressure Brillouin Spectroscopy. J. Korean Phys. Soc. 2017, 70, 382–388. [Google Scholar] [CrossRef]
- Passuello, A.; Moriconi, G.; Shah, S.P. Cement & Concrete Composites Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cem. Concr. Compos. 2009, 31, 699–704. [Google Scholar]
- Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U.J.; Zamin, M. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber. Constr. Build. Mater. 2016, 112, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Cooke, T.F. Inorganic fibers—A literature review. J. Am. Ceram. Soc. 1991, 78, 198013. [Google Scholar] [CrossRef]
- Breitenbücher, R. Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths. Struct. Concr. 2014, 15, 126–135. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zhang, B.; Zhou, C.; Zhao, G. Morphology and electromagnetic interference shielding effects of SiC coated carbon short fibers. J. Mater. Chem. C 2015, 3, 9684–9694. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Composites: Part B Flax fibre and its composites—A review. Compos. Part B 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Promraksa, A.; Chen, L. Journal of Colloid and Interface Science Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface. J. Colloid Interface Sci. 2012, 384, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Aziz, H.; Amrei, M.M.; Dotivala, A.; Tang, C.; Tafreshi, H.V. Modeling Cassie Droplets on Superhydrophobic Coatings with Orthogonal Fibrous Structures. Colloids Surf. A Physicochem. Eng. Asp. 2016, 512, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Amrei, M.M.; Venkateshan, D.G.; D’Souza, N.; Atulasimha, J.; Tafreshi, H.V. Novel Approach to Measure Droplet Detachment Force from Fibers. Langmuir 2016, 32, 13333–13339. [Google Scholar] [CrossRef]
- Bucher, T.M.; Amrei, M.M.; Tafreshi, H.V. Surface & Coatings Technology Wetting resistance of heterogeneous superhydrophobic coatings with orthogonally layered fi bers. Surf. Coat. Technol. 2015, 277, 117–127. [Google Scholar]
- Amrei, M.M.; Tafreshi, H.V. Colloids and Surfaces A: Physicochemical and Engineering Aspects Effects of pressure on wetted area of submerged superhydrophobic granular coatings. Part II: Poly-dispersed coatings. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 547–560. [Google Scholar] [CrossRef]
- Amrei, M.M.; Davoudi, M.; Chase, G.G.; Tafreshi, H.V. Effects of roughness on droplet apparent contact angles on a fiber. Sep. Purif. Technol. 2017, 180, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Aslani, F.; Valizadeh, A. An investigation into the mechanical behaviour of fibre-reinforced geopolymer concrete incorporating NiTi shape memory alloy, steel and polypropylene fibres. Constr. Build. Mater. 2020, 259, 119765. [Google Scholar] [CrossRef]
- Fibers, P. Journal of Reinforced Plastics and Composites; Sage Publications: Southend Oaks, CA, USA, 2010. [Google Scholar]
- Kun, M.; Hilmi, Y.; Mahmud, B. Effects of polypropylene twisted bundle fibers on the mechanical properties of high-strength oil palm shell lightweight concrete. Mater. Struct. 2015, 49, 1221–1233. [Google Scholar]
- Wu, Z.; Shi, C.; He, W.; Wang, D. Uniaxial Compression Behavior of Ultra-High Performance Concrete with Hybrid Steel Fiber. J. Mater. Civ. Eng. 2007, 28, 06016017. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; Henri, K. Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape. Compos. Part B 2019, 174, 107021. [Google Scholar] [CrossRef]
- Bhutta, A.; Farooq, M.; Zanotti, C.; Banthia, N. Pull-out behavior of different fibers in geopolymer mortars: Effects of alkaline solution concentration and curing. Mater. Struct. 2017, 50, 80. [Google Scholar] [CrossRef]
- Xu, M.; Hallinan, B.; Wille, K. Effect of Loading Rates on Pullout Behavior of High Strength Steel Fibers Embedded in Ultra-high Performance Concrete. Cem. Concr. Compos. 2016, 70, 98–109. [Google Scholar] [CrossRef]
- Lee, Y.; Kang, S.; Kim, J. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. Constr. Build. Mater. 2010, 24, 2030–2041. [Google Scholar] [CrossRef]
- Tai, Y.; El-tawil, S. High loading-rate pullout behavior of inclined deformed steel fibers embedded in ultra-high performance concrete. Constr. Build. Mater. 2017, 148, 204–218. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, D. Effects of fibre shape and distance on the pullout behaviour of steel fibres embedded in ultra-high-performance concrete. Cem. Concr. Compos. 2019, 103, 213–223. [Google Scholar] [CrossRef]
- Wu, Z.; Henri, K.; Shi, C. How do fibre shape and matrix composition affect fibre pullout behavior and fl exural properties of UHPC ? Cem. Concr. Compos. 2018, 90, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Shi, C.; Henri, K. Multi-scale investigation of microstructure, fibres pullout behaviour, and mechanical properties of ultra-high performance concrete with nano- CaCO3 particles. Cem. Concr. Compos. 2018, 86, 255–265. [Google Scholar] [CrossRef]
- Noushini, A.; Hastings, M.; Castel, A.; Aslani, F. Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Constr. Build. Mater. 2018, 186, 454–475. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Shi, C.; Zhu, D.; Li, N.; Deng, Y. Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cem. Concr. Compos. 2020, 112, 103670. [Google Scholar] [CrossRef]
- Sung, G.; Bok, Y.; Taek, K.; Soo, Y. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 2015, 47, 409–418. [Google Scholar]
- Xu, H.; van Deventer, J.S.J. Geopolymerisation of multiple minerals. Miner. Eng. 2002, 15, 1131–1139. [Google Scholar] [CrossRef]
- Yong, S.L.; Feng, D.W.; Lukey, G.C.; van Deventer, J.S.J. Chemical characterisation of the steel—Geopolymeric gel interface. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 411–423. [Google Scholar] [CrossRef]
- Sarker, P.K.; Haque, R.; Ramgolam, K.V. Fracture behaviour of heat cured fly ash based geopolymer concrete. J. Mater. 2013, 44, 580–586. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Jang, Y.S.; Chun, B.; Kim, S. Chelate effect on fiber surface morphology and its benefits on pullout and tensile behaviors of ultra-high-performance concrete. Cem. Concr. Compos. 2021, 115, 103864. [Google Scholar] [CrossRef]
- Alomayri, T.; Assaedi, H.; Shaikh, F.U.A.; Low, I.M. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. Integr. Med. Res. 2014, 2, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Flores-vivian, I.; Hejazi, V.; Kozhukhova, M.I.; Nosonovsky, M.; Sobolev, K. Self-Assembling Particle-Siloxane Coatings for Superhydrophobic Concrete. ACS Appl. Mater. Interfaces 2013, 5, 13284–13294. [Google Scholar] [CrossRef]
- Ochoa-putman, C.; Vaidya, U.K. Composites: Part A Mechanisms of interfacial adhesion in metal—Polymer composites—Effect of chemical treatment. Compos. Part A 2011, 42, 906–915. [Google Scholar] [CrossRef]
- Singh, S.; Shukla, A.; Brown, R. Pullout behavior of polypropylene fibers from cementitious matrix. Cem. Concr. Res. 2004, 34, 1919–1925. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Effect of Graphene Oxide on the Properties of Its Composite with Polyaniline. ACS Appl. Mater. Interfaces 2010, 2, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, H.; Yang, M.; Nagarajan, A.; Soghrati, S. Effects of shape and misalignment of fibers on the failure response of carbon fiber reinforced polymers. Comput. Mech. 2018, 63, 999–1017. [Google Scholar] [CrossRef]
- Yang, L.; Yan, Y.; Liu, Y.; Ran, Z. Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Compos. Sci. Technol. 2012, 72, 1818–1825. [Google Scholar] [CrossRef]
- Hobbiebrunken, T. Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2248–2256. [Google Scholar] [CrossRef]
No | Author | parameter | Variable | Properties | Material Geopolymers | Material Fibers and Shape | Findings |
---|---|---|---|---|---|---|---|
1. | Wang et al. [60] |
|
|
|
|
|
|
2. | Yijiang et al. [27] |
|
|
|
|
|
|
3. | Al-Majidi et al. [40] |
|
|
|
|
|
|
4. | Noushini et al. [72] |
|
|
|
|
|
|
5. | Liu et al. [73] |
|
|
|
|
|
|
No | Author | Parameter | Properties | Material | Material of Fibers and Shape | Findings |
---|---|---|---|---|---|---|
1. | Ranjbar et al. [21] |
|
|
|
|
|
2. | Amrei et al. [59] | - |
| - |
|
|
3. | Rolf et al. [51] |
|
|
|
|
|
4. | Kim et al. [69] |
|
|
|
|
|
5. | Bhutta et al. [65] |
|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazid, M.H.; Faris, M.A.; Abdullah, M.M.A.B.; Nabiałek, M.; Rahim, S.Z.A.; Salleh, M.A.A.M.; Kheimi, M.; Sandu, A.V.; Rylski, A.; Jeż, B. Contribution of Interfacial Bonding towards Geopolymers Properties in Geopolymers Reinforced Fibers: A Review. Materials 2022, 15, 1496. https://doi.org/10.3390/ma15041496
Yazid MH, Faris MA, Abdullah MMAB, Nabiałek M, Rahim SZA, Salleh MAAM, Kheimi M, Sandu AV, Rylski A, Jeż B. Contribution of Interfacial Bonding towards Geopolymers Properties in Geopolymers Reinforced Fibers: A Review. Materials. 2022; 15(4):1496. https://doi.org/10.3390/ma15041496
Chicago/Turabian StyleYazid, Muhd Hafizuddin, Meor Ahmad Faris, Mohd Mustafa Al Bakri Abdullah, Marcin Nabiałek, Shayfull Zamree Abd Rahim, Mohd Arif Anuar Mohd Salleh, Marwan Kheimi, Andrei Victor Sandu, Adam Rylski, and Bartłomiej Jeż. 2022. "Contribution of Interfacial Bonding towards Geopolymers Properties in Geopolymers Reinforced Fibers: A Review" Materials 15, no. 4: 1496. https://doi.org/10.3390/ma15041496
APA StyleYazid, M. H., Faris, M. A., Abdullah, M. M. A. B., Nabiałek, M., Rahim, S. Z. A., Salleh, M. A. A. M., Kheimi, M., Sandu, A. V., Rylski, A., & Jeż, B. (2022). Contribution of Interfacial Bonding towards Geopolymers Properties in Geopolymers Reinforced Fibers: A Review. Materials, 15(4), 1496. https://doi.org/10.3390/ma15041496