Designing High Entropy Bulk Metallic Glass (HE-BMG) by Similar Element Substitution/Addition
Abstract
:1. Introduction
2. Experimental
3. Results
4. Discussion
4.1. Glass Forming Ability (GFA) of High Entropy Alloys by Element Addition/Substitution
4.2. Atomic Radius Characteristics of HE-BMG
4.3. Assessing Degree of Lattice Distortion in High Entropy Alloys by Parameter δ′
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greer, A.L. Metallic glasses. Science 1995, 267, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.L. Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 1999, 24, 42–56. [Google Scholar] [CrossRef]
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. R 2004, 44, 45–89. [Google Scholar] [CrossRef]
- Inoue, A.; Takeuchi, A. Recent development and applications of bulk glassy alloys. Int. J. Appl. Glass Sci. 2010, 1, 273–295. [Google Scholar] [CrossRef]
- Wang, W.H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 2012, 57, 487–656. [Google Scholar] [CrossRef]
- Greer, A.L. Metallic glasses. Phys. Metall. 2014, 35, 305–385. [Google Scholar] [CrossRef]
- Li, H.X.; Lu, Z.C.; Wang, S.L.; Wu, Y.; Lu, Z.P. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Prog. Mater. Sci. 2019, 103, 235–318. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, C.; Chen, Z.J.; Li, Y.; Yan, W.Y.; Yu, H.B.; Liu, L. Three-dimensional hierarchical porous structures of metallic glass/copper composite catalysts by 3D printing for efficient wastewater treatments. ACS Appl. Mater. Inter. 2021, 13, 7227–7237. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principle elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.; Knight, P.; Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 2007, 90, 181904. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef] [Green Version]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.P.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.J.; Wang, T.M.; Wen, B.; Wang, Z.J.; Jie, J.C.; Cao, Z.Q.; et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 2014, 4, 6200. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. Design of high entropy alloys: A single-parameter thermodynamic rule. Scr. Mater. 2015, 104, 53–55. [Google Scholar] [CrossRef]
- Ma, L.Q.; Wang, L.M.; Zhang, T.; Inoue, A. Bulk Glass Formation of Ti–Zr–Hf–Cu–M (M = Fe,Co,Ni) Alloys. Mater. Trans. 2002, 43, 277–280. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Xia, X.X.; Bai, H.Y.; Zhao, D.Q.; Wang, W.H. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl. Phys. Lett. 2011, 98, 141913. [Google Scholar] [CrossRef]
- Gao, X.Q.; Zhao, K.; Ke, H.B.; Ding, D.W.; Wang, W.H.; Bai, H.Y. High mixing entropy bulk metallic glasses. J. Non-Cryst. Solids 2011, 357, 3557–3560. [Google Scholar] [CrossRef]
- Takeuchi, A.; Chen, N.; Wada, T.; Yokoyama, Y.; Kato, H.; Inoue, A.; Yeh, J.W. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 2011, 19, 1546–1554. [Google Scholar] [CrossRef]
- Li, H.F.; Xie, X.H.; Zhao, K.; Wang, Y.B.; Zheng, Y.F.; Wang, W.H.; Qin, L. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater. 2013, 9, 8561–8573. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.Y.; Yao, K.F. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass. J. Non-Cryst. Solids 2013, 364, 9–12. [Google Scholar] [CrossRef]
- Ding, H.Y.; Shao, Y.; Gong, P.; Li, J.F.; Yao, K.F. A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability. Mater. Lett. 2014, 125, 151–153. [Google Scholar] [CrossRef]
- Zhao, S.F.; Yang, G.N.; Ding, H.Y.; Yao, K.F. A quinary Ti-Zr-Hf-Be-Cu high entropy bulk metallic glass with a critical size of 12 mm. Intermetallics 2015, 61, 47–50. [Google Scholar] [CrossRef]
- Zhao, S.F.; Shao, Y.; Liu, X.; Chen, N.; Ding, H.Y.; Yao, K.F. Pseudo-quinary Ti20Zr20Hf20Be20(Cu20−xNix) high entropy bulk metallic glasses with large glass forming ability. Mater. Des. 2015, 87, 625–631. [Google Scholar] [CrossRef]
- Huo, J.T.; Huo, L.S.; Men, H.; Wang, X.M.; Inoue, A.; Wang, J.Q.; Chang, C.T.; Li, R.W. The magnetocaloric effect of Gd-Tb-Dy-Al-M (M= Fe, Co and Ni) high-entropy bulk metallic glasses. Intermetallics 2015, 58, 31–35. [Google Scholar] [CrossRef]
- Qi, T.L.; Li, Y.H.; Takeuchi, A.; Xie, G.Q.; Miao, H.T.; Zhang, W. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses. Intermetallics 2015, 66, 8–12. [Google Scholar] [CrossRef]
- Chen, C.; Pang, S.J.; Cheng, Y.Y.; Zhang, T. A centimeter-size Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 bulk metallic glass with high mixing entropy designed by multi-substitution. J. Non-Cryst. Solids 2015, 410, 39–42. [Google Scholar] [CrossRef]
- Kim, J.; Oh, H.S.; Kim, J.; Ryu, C.W.; Lee, G.W.; Chang, H.J.; Park, E.S. Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass. Acta Mater. 2018, 155, 350–361. [Google Scholar] [CrossRef]
- Li, J.; Xue, L.; Yang, W.M.; Yuan, C.C.; Huo, J.T.; Shen, B.L. Distinct spin glass behavior and excellent magnetocaloric effect in Er20Dy20Co20Al20RE20 (RE = Gd, Tb and Tm) high-entropy bulk metallic glasses. Intermetallics 2018, 96, 90–93. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Li, Y.H.; Zhu, Z.W.; Zhang, W. Formation and properties of Fe25Co25Ni25(P, C, B, Si)25 high-entropy bulk metallic glasses. J. Non-Cryst. Solids 2018, 487, 60–64. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, Y.; Li, J.J.; Wu, J.L.; Zhang, B. Correlation between mechanical and thermodynamic properties for La–Ce–Ni–Cu–Al high-entropy metallic glasses. J. Iron Steel Res. Int. 2018, 25, 658–665. [Google Scholar] [CrossRef]
- Wu, K.N.; Liu, C.; Li, Q.; Huo, J.T.; Li, M.C.; Chang, C.T.; Sun, Y.F. Magnetocaloric effect of Fe25Co25Ni25Mo5P10B10 high-entropy bulk metallic glass. J. Magn. Magn. Mater. 2019, 489, 165404. [Google Scholar] [CrossRef]
- Li, C.Z.; Li, Q.; Li, M.C.; Chang, C.T.; Li, H.X.; Dong, Y.Q.; Sun, Y.F. New ferromagnetic (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 high entropy bulk metallic glass with superior magnetic and mechanical properties. J. Alloys Compd. 2019, 791, 947–951. [Google Scholar] [CrossRef]
- Wada, T.; Jiang, J.; Yubuta, K.; Kato, H.; Takeuchi, A. Septenary Zr–Hf–Ti–Al–Co–Ni–Cu high-entropy bulk metallic glasses with centimeter-scale glass-forming ability. Materialia 2019, 7, 100372. [Google Scholar] [CrossRef]
- Pang, C.M.; Chen, L.; Xu, H.; Guo, W.; Lv, Z.W.; Huo, J.T.; Cai, M.J.; Shen, B.L.; Wang, X.L.; Yuan, C.C. Effect of Dy, Ho, and Er substitution on the magnetocaloric properties of Gd-Co-Al-Y high entropy bulk metallic glasses. J. Alloys Compd. 2020, 827, 154101. [Google Scholar] [CrossRef]
- Li, Y.H.; Wang, S.W.; Wang, X.W.; Yin, M.L.; Zhang, W. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance. J. Mater. Sci. Technol. 2020, 43, 32–39. [Google Scholar] [CrossRef]
- Shao, L.L.; Wang, Q.Q.; Xue, L.; Zhu, M.Y.; Wang, A.D.; Luan, J.H.; Yin, K.B.; Luo, Q.; Zeng, Q.S.; Sun, L.T.; et al. Effects of minor Si addition on structural heterogeneity and glass formation of GdDyErCoAl high-entropy bulk metallic glass. J. Mater. Res. Technol. 2021, 11, 378–391. [Google Scholar] [CrossRef]
- Jalali, A.; Malekan, M.; Park, E.S.; Rashidi, R.; Bahmani, A.; Yoo, G.H. Thermal behavior of newly developed Zr33Hf8Ti6Cu32Ni10Co5Al6 high-entropy bulk metallic glass. J. Alloys Compd. 2021, 892, 162220. [Google Scholar] [CrossRef]
- Luan, H.W.; Shao, Y.; Li, J.F.; Mao, W.L.; Han, Z.D.; Shao, C.L.; Yao, K.F. Phase stabilities of high entropy alloys. Scr. Mater. 2020, 179, 40–44. [Google Scholar] [CrossRef]
- Toda-Caraballo, I.; Rivera-Diaz-del-Castillo, P.E.J. A criterion for the formation of high entropy alloys based on lattice distortion. Intermetallics 2016, 71, 76–87. [Google Scholar] [CrossRef]
- Wang, Z.J.; Huang, Y.H.; Yang, Y.; Wang, J.C.; Liu, C.T. Atomic-size effect and solid solubility of multicomponent alloys. Scr. Mater. 2015, 94, 28–31. [Google Scholar] [CrossRef]
- Wang, Z.J.; Qiu, W.F.; Yang, Y.; Liu, C.T. Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics 2015, 64, 63–69. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 2001, 36, 2183–2198. [Google Scholar] [CrossRef]
Composition | Tg (K) | Tx (K) | Tm (K) | Tl (K) | σ0.2 (MPa) | σb (MPa) | εp (%) | Year |
---|---|---|---|---|---|---|---|---|
Ti20Zr20Cu20Ni20Be20 | 683 | 729 | 1076 | 1161 | - | 2315 | 0 | 2013 [24] |
Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 | 681 | 751 | 1019 | 1100 | 1943 | 2064 | 0.6 | 2014 [25] |
Ti20Hf20Cu20Ni20Be20 | 717 | 760 | 1095 | 1220 | - | 2425 | 0 | This work |
Ti16.7Zr16.7Nb16.7Cu16.7Ni16.7Be16.7 | 684 | 739 | 1066 | 1218 | 2330 | 2450 | 0.5 | This work |
Composition | Super Large Atom r > 0.165 nm | Large Atom r ≈ 0.16 nm | Medium Atom r ≈ 0.14 nm | Small Atom r ≈ 0.12 nm | Ultra Small Atom r < 0.12 nm | Year |
---|---|---|---|---|---|---|
Ti20Zr20Hf20Cu20Ni20 | Zr, Hf | Ti | Cu, Ni | 2002 [19] | ||
Sr20Ca20Yb20Mg20Zn20 | Sr, Ca, Yb | Mg | Zn | 2011 [20,23] | ||
Er20Tb20Dy20Ni20Al20 | Tb, Dy, Er | Al | Ni | 2011 [21] | ||
Pd20Pt20Cu20Ni20P20 | Pt, Pd | Cu, Ni | P | 2011 [22] | ||
Ti20Zr20Cu20Ni20Be20 | Zr | Ti | Cu, Ni | Be | 2013 [24] | |
Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 | Zr, Hf | Ti | Cu, Ni | Be | 2014 [25] | |
Ti20Zr20Hf20(Cu20−xNix)Be20 | Zr, Hf | Ti | Cu, Ni | Be | 2015 [26,27] | |
Ho20Er20Co20Al20Dy20 | Dy, Ho, Er | Al | Co | 2015 [28] | ||
Fe25Co25Ni25(B, Si)25 | Co, Ni, Fe | Si, B | 2015 [29] | |||
Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 | Y | Zr, Hf | Ti, Al | Cu, Co, Ni, Fe | 2015 [30] | |
Er18Gd18Y20Al24Co20 | Y, Gd, Er | Al | Co | 2018 [31] | ||
Er20Dy20Co20Al20RE20 (RE = Gd, Tb, Tm) | Gd/Tb, Dy, Er | Tm | Al | Co | 2018 [32] | |
Fe25Co25Ni25(P0.4C0.2B0.2Si0.2)25 | Co, Ni, Fe | Si, P, B, C | 2018 [33] | |||
La25–35Ce25–35Ni5–15Cu5–15Al20 | La, Ce | Al | Cu, Ni | 2018 [34] | ||
Fe25Co25Ni25Mo5P10B10 | Mo | Co, Ni, Fe | P, B | 2019 [35] | ||
(Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 | Co, Ni, Fe | P, B | 2019 [36] | |||
Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 | Zr, Hf | Ti, Al | Cu, Co, Ni | 2019 [37] | ||
Gd25Co25Al25Y15RE10 (RE = Dy, Ho, Er) | Y, Gd, (Dy, Ho, Er) | Al | Co | 2020 [38] | ||
Fe20–35Ni20Cr20–30Mo5–15(P0.6C0.2B0.2)20 | Mo | Cr, Ni, Fe | P, B, C | 2020 [39] | ||
(Gd0.2Dy0.2Er0.2Co0.2Al0.2)99.5Si0.5 | Gd, Dy, Er | Al | Co | Si | 2021 [40] | |
Zr33Hf8Ti6Cu32Ni10Co5Al6 | Zr, Hf | Ti, Al | Cu, Co, Ni | 2021 [41] | ||
Ti20Hf20Cu20Ni20Be20 | Hf | Ti | Cu, Ni | Be | This work | |
Ti16.7Zr16.7Nb16.7Cu16.7Ni16.7Be16.7 | Zr | Ti, Nb | Cu, Ni | Be | This work |
No. | Composition | r > 0.165 nm | r ≈ 0.16 nm | r ≈ 0.14 nm | r ≈ 0.12 nm | r < 0.12 nm | δ [13] | δ′ | VEC [15] | Phase | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | CrMnFeCoNi | Mn | Co, Cr, Ni, Fe | 1.26744 | 3.267 | 1.717 | 8 | FCC [11] | |||
2 | CuCoCrNiFe | Cu, Co, Cr, Ni, Fe | 1.25304 | 1.031 | 0.587 | 8.8 | FCC [10] | ||||
3 | Al0.3CuCoCrFeNi | Al | Cu, Co, Cr, Ni, Fe | 1.26315 | 3.416 | 2.042 | 8.472 | FCC [10] | |||
4 | A0.5lCuCoCrFeNi | Al | Cu, Co, Cr, Ni, Fe | 1.26928 | 4.161 | 2.178 | 8.273 | FCC [10] | |||
5 | Al0.8CuCoCrFeNi | Al | Cu, Co, Cr, Ni, Fe | 1.27768 | 4.912 | 2.363 | 8 | FCC + BCC [10] | |||
6 | AlCuCoCrFeNi | Al | Cu, Co, Cr, Ni, Fe | 1.28281 | 5.271 | 2.475 | 7.833 | FCC + BCC [10] | |||
7 | Al2.5CuCoCrFeNi | Al | Cu, Co, Cr, Ni, Fe | 1.31259 | 6.466 | 3.106 | 6.867 | FCC + BCC [10] | |||
8 | Al2.8CuCoCrFeNi | Al | Cu, Co, Cr, Ni, Fe | 1.31717 | 6.554 | 3.201 | 6.718 | BCC [10] | |||
9 | Al3.0CuCoCrFeNi | Al | Cu, Co, Cr, Ni, Fe | 1.32004 | 6.598 | 3.259 | 6.625 | BCC [10] | |||
10 | AlCoCrFeNi | Al | Co, Cr, Ni, Fe | 1.28378 | 5.767 | 2.968 | 7.2 | BCC [12] | |||
11 | Ti20Zr20Hf20Cu20Ni20 | Zr, Hf | Ti | Cu, Ni | 1.43308 | 10.324 | 4.977 | - | BMG [19] | ||
12 | Ti20Zr20Cu20Ni20Be20 | Zr | Ti | Cu, Ni | Be | 1.34318 | 12.514 | 7.065 | - | BMG [24] | |
13 | Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 | Zr, Hf | Ti | Cu, Ni | Be | 1.38223 | 12.773 | 5.721 | - | BMG [25] | |
14 | Ti20Hf20Cu20Ni20Be20 | Hf | Ti | Cu, Ni | Be | 1.33818 | 11.993 | 6.718 | - | BMG (this work) | |
15 | Ti16.7Zr16.7Nb16.7Cu16.7Ni16.7Be16.7 | Zr | Ti, Nb | Cu, Ni | Be | 1.35495 | 11.546 | 5.826 | - | BMG (this work) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, H.; Luan, H.; Bu, H.; Xu, H.; Yao, K. Designing High Entropy Bulk Metallic Glass (HE-BMG) by Similar Element Substitution/Addition. Materials 2022, 15, 1669. https://doi.org/10.3390/ma15051669
Ding H, Luan H, Bu H, Xu H, Yao K. Designing High Entropy Bulk Metallic Glass (HE-BMG) by Similar Element Substitution/Addition. Materials. 2022; 15(5):1669. https://doi.org/10.3390/ma15051669
Chicago/Turabian StyleDing, Hongyu, Hengwei Luan, Hengtong Bu, Hongjie Xu, and Kefu Yao. 2022. "Designing High Entropy Bulk Metallic Glass (HE-BMG) by Similar Element Substitution/Addition" Materials 15, no. 5: 1669. https://doi.org/10.3390/ma15051669
APA StyleDing, H., Luan, H., Bu, H., Xu, H., & Yao, K. (2022). Designing High Entropy Bulk Metallic Glass (HE-BMG) by Similar Element Substitution/Addition. Materials, 15(5), 1669. https://doi.org/10.3390/ma15051669