Experimental and Simulation Investigation of Nd Additions on As-Cast Microstructure and Precipitate Development in Mg–Nd System Alloys
Abstract
:1. Introduction
2. Experimental Procedure and Simulation Method
2.1. Materials and Experimental Methods
2.2. Model Description and Simulation Parameters
3. Results and Discussion
3.1. Microstructure and Precipitate Morphologies
3.2. Chemical Composition and Phase Characterization
3.3. Simulation of Eutectic Growth and Development
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polmear, I.J. Magnesium alloys and applications. Mater. Sci. Technol. 1994, 10, 1–16. [Google Scholar] [CrossRef]
- Merson, D.; Brilevsky, A.; Myagkikh, P.; Tarkova, A.; Prokhorikhin, A.; Kretov, E.; Frolova, T.; Vinogradov, A. The Functional Properties of Mg–Zn–X Biodegradable Magnesium Alloys. Materials 2020, 13, 544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Wang, C.; Sun, M.; Ding, W. Recent developments and applications on high-performance cast magnesium rare-earth alloys. J. Magnes. Alloy. 2020, 9, 1–20. [Google Scholar] [CrossRef]
- Hisa, M.; Barry, J.C.; Dunlop, G.L. New type of precipitate in Mg-rare-earth alloys. Philos. Mag. A 2002, 82, 497–510. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, Y.M.; Wilson, N.C.; Nie, J.F. On the structure and role of βF’ in β1 precipitation in Mg–Nd alloys. Acta Mater. 2017, 133, 408–426. [Google Scholar] [CrossRef]
- Yan, J.; Sun, Y.; Xue, F.; Xue, S.; Xiao, Y.; Tao, W. Creep behavior of Mg-2 wt. % Nd binary alloy. Mater. Sci. Eng. A 2009, 524, 102–107. [Google Scholar] [CrossRef]
- Chen, L.; Sheng, Y.; Wang, X.; Zhao, X.; Liu, H.; Li, W. Effect of the Microstructure and Distribution of the Second Phase on the Stress Corrosion Cracking of Biomedical Mg-Zn-Zr-xSr Alloys. Materials 2018, 11, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Yang, C.; Allison, J.E.; Qi, L.; Misra, A. Dislocation cross-slip in precipitation hardened Mg–Nd alloys. J. Alloy. Compd. 2020, 859, 157858. [Google Scholar] [CrossRef]
- Wei, L.Y.; Dunlop, G.L.; Westengen, H. Age hardening and precipitation in a cast magnesium-rare-earth alloy. J. Mater. Sci. 1996, 31, 387–397. [Google Scholar] [CrossRef]
- Tang, J.; Huo, Q.; Zhang, Z.; Zhang, Y.; Zhao, S.; Hashimoto, A.; Yang, X. Enhancing the creep resistance of a dilute Mg-1.5 wt%Nd alloy plate via pre-compression and subsequent peak-aging. J. Alloys Compd. 2021, 861, 158590. [Google Scholar] [CrossRef]
- Li, S.; Zheng, W.; Tang, B.; Zeng, D.; Guo, X. Grain Coarsening Behavior of Mg-Al Alloys with Mischmetal Addition. J. Rare Earths 2007, 25, 227–232. [Google Scholar] [CrossRef]
- Kojima, Y.; Aizawa, T.; Kamado, S. Mechanical Properties of Rapidly Solidified Mg-Zn Alloys. Mater. Sci. Forum 2000, 350–351, 105–110. [Google Scholar] [CrossRef]
- Niu, R.-L.; Yan, F.-J.; Wang, Y.-S.; Duan, D.-P.; Yang, X.-M. Effect of Zr content on damping property of Mg–Zr binary alloys. Mater. Sci. Eng. A 2018, 718, 418–426. [Google Scholar] [CrossRef]
- Guo, H.; Liu, S.; Huang, L.; Wang, D.; Du, Y.; Chu, M. Thermal Conductivity of As-Cast and Annealed Mg-RE Binary Alloys. Metals 2021, 11, 554. [Google Scholar] [CrossRef]
- Liu, D.; Yang, D.; Li, X.; Hu, S. Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review. J. Mater. Res. Technol. 2018, 8, 1538–1549. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, Y.; Chen, T.; Dai, X.; Zhang, L.; Li, D.; Tang, A.; Yi, W.; Zhang, L.; Pan, F. Diffusion behaviour and mechanical properties of binary Mg–Gd system. Intermetallics 2021, 133, 107171. [Google Scholar] [CrossRef]
- Sudholz, A.; Gusieva, K.; Chen, X.-B.; Muddle, B.; Gibson, M.; Birbilis, N. Electrochemical behaviour and corrosion of Mg–Y alloys. Corros. Sci. 2011, 53, 2277–2282. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Feyerabend, F.; Blawert, C.; Gan, W.; Maawad, E.; You, S.; Gavras, S.; Scharnagl, N.; Bode, J.; et al. Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions. Acta Biomater. 2021, 121, 695–712. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Sun, Y.; Xue, F.; Xue, S.; Tao, W. Microstructure and mechanical properties in cast magnesium–neodymium binary alloys. Mater. Sci. Eng. A 2008, 476, 366–371. [Google Scholar] [CrossRef]
- Hantzsche, K.; Bohlen, J.; Wendt, J.; Kainer, K.U.; Yi, S.B.; Letzig, D. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr. Mater. 2010, 63, 725–730. [Google Scholar] [CrossRef]
- Zhu, S.; Gibson, M.; Easton, M.; Nie, J. The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys. Scr. Mater. 2010, 63, 698–703. [Google Scholar] [CrossRef]
- Liu, D.; Song, J.; Jiang, B.; Zeng, Y.; Wang, Q.; Jiang, Z.; Liu, B.; Huang, G.; Pan, F. Effect of Al content on microstructure and mechanical properties of as-cast Mg-5Nd alloys. J. Alloy. Compd. 2017, 737, 263–270. [Google Scholar] [CrossRef]
- Xu, Z.; Weyland, M.; Nie, J. On the strain accommodation of β1 precipitates in magnesium alloy WE54. Acta Mater. 2014, 75, 122–133. [Google Scholar] [CrossRef]
- DeWitt, S.; Solomon, E.L.S.; Natarajan, A.R.; Araullo-Peters, V.; Rudraraju, S.; Aagesen, L.K.; Puchala, B.; Marquis, E.A.; Ven, A.V.D.; Thornton, K.; et al. Misfit-driven β′′′ precipitate composition and morphology in Mg-Nd alloys. Acta Mater. 2017, 136, 378–389. [Google Scholar] [CrossRef]
- Sun, B.; Tan, J.; Zhang, H.; Sun, Y. Atomic scale investigation of a novel metastable structure in aged Mg–Nd alloys. Scr. Mater. 2018, 161, 6–12. [Google Scholar] [CrossRef]
- Saito, K.; Hiraga, K. The Structures of Precipitates in an Mg-0.5 at%Nd Age-Hardened Alloy Studied by HAADF-STEM Technique. Mater. Trans. 2011, 52, 1860–1867. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Gao, Y.; Zhu, Y.; Wang, Y.; Nie, J. A simulation study of β 1 precipitation on dislocations in an Mg–rare earth alloy. Acta Mater. 2014, 77, 133–150. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, H.; Xu, Z.; Wang, Y.; Nie, J. Linear-chain configuration of precipitates in Mg–Nd alloys. Acta Mater. 2015, 83, 239–247. [Google Scholar] [CrossRef]
- Natarajan, A.R.; Solomon, E.L.; Puchala, B.; Marquis, E.; Van der Ven, A. On the early stages of precipitation in dilute Mg–Nd alloys. Acta Mater. 2016, 108, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.J.; Wu, G.H.; Pang, S.; Ding, W.J. Mg-Nd alloy and application of Nd in magnesium alloys. Foundry Technol. 2012, 33, 151–154, CNKI:SUN:ZZJS.0.2012-02-005. [Google Scholar]
- Chia, T.; Easton, M.; Zhu, S.; Gibson, M.; Birbilis, N.; Nie, J. The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys. Intermetallics 2009, 17, 481–490. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, L.; Zhu, G.; Wang, J.; Wen, W.; Zeng, X. Understanding the Strengthening Effect of β1 Precipitates in Mg-Nd Using In Situ Synchrotron X-ray Diffraction. JOM 2018, 70, 2315–2320. [Google Scholar] [CrossRef]
- Jackson, K.; Hunt, J. Lamellar and Rod Eutectic Growth. In Dynamics of Curved Fronts; Academic Press: Cambridge, MA, USA, 1988; pp. 363–376. [Google Scholar] [CrossRef]
- Choudhuri, D.; Dendge, N.; Nag, S.; Gibson, M.A.; Banerjee, R. Role of applied uniaxial stress during creep testing on precipitation in Mg–Nd alloys. Mater. Sci. Eng. A 2014, 612, 140–152. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y. Eutectic growth in bulk undercooled melts. Acta Mater. 2005, 53, 2351–2359. [Google Scholar] [CrossRef]
- Chen, R.; Xu, Q.-Y.; Liu, B.-C. Modeling of aluminum-silicon irregular eutectic growth by cellular automaton model. China Foundry 2016, 13, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Mezbahul-Islam, M.; Mostafa, A.; Medraj, M. Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data. J. Mater. 2014, 2014, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.H.; Guo, Z.P.; Xiong, S.M. Numerical simulation of dendritic growth of magnesium alloy with convection. Chin. J. Nonferrous Met. 2015, 25, 835–843. [Google Scholar]
- Gorsse, S.; Hutchinson, C.; Chevalier, B.; Nie, J.-F. A thermodynamic assessment of the Mg–Nd binary system using random solution and associate models for the liquid phase. J. Alloy. Compd. 2005, 392, 253–262. [Google Scholar] [CrossRef]
- Sun, M.; Hu, X.; Peng, L.; Fu, P.; Ding, W.; Peng, Y. On the production of Mg-Nd master alloy from NdFeB magnet scraps. J. Mater. Process. Technol. 2015, 218, 57–61. [Google Scholar] [CrossRef]
- Kubásek, J.; Vojtëch, D. Structural and corrosion characterization of biodegradable Mg–RE (RE=Gd, Y, Nd) alloys. Trans. Nonferrous Met. Soc. China 2013, 23, 1215–1225. [Google Scholar] [CrossRef]
- Wang, X. Investigation on High-Performance Mg-Nd Alloys. Master Thesis, Southeast University, Nanjing, China, 2007. [Google Scholar]
- Bourezg, Y.I.; Azzeddine, H.; Hennet, L.; Thiaudière, D.; Huang, Y.; Bradai, D.; Langdon, T.G. The sequence and kinetics of pre-precipitation in Mg-Nd alloys after HPT processing: A synchrotron and DSC study. J. Alloys Compd. 2017, 719, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, Y.; Feyerabend, F.; Gavras, S.; Xu, Y.; Willumeit-Römer, R.; Kainer, K.U.; Hort, N. Effects of Intermetallic Microstructure on Degradation of Mg-5Nd Alloy. Met. Mater. Trans. A 2020, 51, 5498–5515. [Google Scholar] [CrossRef]
- Nie, J.-F. Precipitation and Hardening in Magnesium Alloys. MTA 2012, 43, 3891–3939. [Google Scholar] [CrossRef] [Green Version]
Alloys | Designed Compositions | Analyzed Compositions | ||
---|---|---|---|---|
Nd (wt.%) | Mg | Nd (wt.%) | Mg | |
Mg–1 Nd | 1 | Bal. | 0.95 | Bal. |
Mg–2 Nd | 2 | Bal. | 1.98 | Bal. |
Mg–3 Nd | 3 | Bal. | 3.10 | Bal. |
Mg–4 Nd | 4 | Bal. | 3.92 | Bal. |
Mg–5 Nd | 5 | Bal. | 4.85 | Bal. |
Mg–6 Nd | 6 | Bal. | 5.89 | Bal. |
Mg–7 Nd | 7 | Bal. | 6.92 | Bal. |
Definition and Units | Values |
---|---|
Eutectic temperature (°C) | 552 |
Eutectic composition (wt.%) | 33 |
Liquid slope mα (°C/wt.%) | −5.1 |
Liquid slope mβ1 (°C/wt.%) | 13.2 |
Gibbs–Thomson coefficient of α-Mg (m·K) | 6.2 × 10−7 |
Gibbs–Thomson coefficient of the β1 phase (m·K) | 1.7 × 10−7 |
Solute distribution coefficient of α-Mg | 0.4 |
Solute distribution coefficient of the β1 phase | 0.113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Su, B.; Yang, X.; Xu, Q.; Zhang, X.; Wang, J.; Wen, Z. Experimental and Simulation Investigation of Nd Additions on As-Cast Microstructure and Precipitate Development in Mg–Nd System Alloys. Materials 2022, 15, 2535. https://doi.org/10.3390/ma15072535
Yan X, Su B, Yang X, Xu Q, Zhang X, Wang J, Wen Z. Experimental and Simulation Investigation of Nd Additions on As-Cast Microstructure and Precipitate Development in Mg–Nd System Alloys. Materials. 2022; 15(7):2535. https://doi.org/10.3390/ma15072535
Chicago/Turabian StyleYan, Xuewei, Bin Su, Xuemei Yang, Qingdong Xu, Xiaopeng Zhang, Jing Wang, and Zhenhua Wen. 2022. "Experimental and Simulation Investigation of Nd Additions on As-Cast Microstructure and Precipitate Development in Mg–Nd System Alloys" Materials 15, no. 7: 2535. https://doi.org/10.3390/ma15072535
APA StyleYan, X., Su, B., Yang, X., Xu, Q., Zhang, X., Wang, J., & Wen, Z. (2022). Experimental and Simulation Investigation of Nd Additions on As-Cast Microstructure and Precipitate Development in Mg–Nd System Alloys. Materials, 15(7), 2535. https://doi.org/10.3390/ma15072535