Gold Nanoparticles-Functionalized Cotton as Promising Flexible and Green Substrate for Impedometric VOC Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Gold Nanoparticles Solutions (AuNP)
2.3. Cotton Functionalization
2.4. Structural and Morphological Characterizations
2.5. Impedance Measurements
3. Results and Discussion
3.1. Structural and Morphological Characterizations
3.2. Electrical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anton, A.; Agapiou, A. Breath and Sweat Analysis as a Tool for Medical Diagnostics. In Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, Greece, 3–5 November 2014. [Google Scholar] [CrossRef]
- Shirasu, M.; Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011, 150, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Janfaza, S.; Khorsand, B.; Nikkhah, M.; Zahiri, J. Digging deeper into volatile organic compounds associated with cancer. Biol. Methods Protoc. 2019, 4, bpz014. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Vishinkin, R.; Barash, O.; Nakhleh, M.K.; Haick, H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 2018, 47, 4781–4859. [Google Scholar] [CrossRef] [PubMed]
- Jalal, A.H.; Alam, F.; Roychoudhury, S.; Umasankar, Y.; Pala, N.; Bhansali, S. Prospects and challenges of volatile organic compound sensors in human healthcare. Acs Sens. 2018, 3, 1246–1263. [Google Scholar] [CrossRef]
- Rydosz, A. Sensors for enhanced detection of acetone as a potential tool for noninvasive diabetes monitoring. Sensors 2018, 18, 2298. [Google Scholar] [CrossRef] [PubMed]
- Campisi, G.; Musciotto, A.; Di Fede, O.; Di Marco, V.; Craxì, A. Halitosis: Could it be more than mere bad breath? Intern. Emerg. Med. 2011, 6, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Solga, S.F.; Alkhuraishe, A.; Cope, K.; Tabesh, A.; Clark, J.M.; Torbenson, M.; Schwartz, P.; Magnuson, T.; Diehl, A.M.; Risby, T.H. Breath biomarkers and non-alcoholic fatty liver disease: Preliminary observations. Biomarkers 2006, 11, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Kupari, M.; Lommi, J.; Ventilä, M.; Karjalainen, U. Breath acetone in congestive heart failure. Am. J. Cardiol. 1995, 76, 1076–1078. [Google Scholar] [CrossRef]
- Ulanowska, A.; Trawińska, E.; Sawrycki, P.; Buszewski, B. Chemotherapy control by breath profile with application of SPME-GC/MS method. J. Sep. Sci. 2012, 35, 2908–2913. [Google Scholar] [CrossRef]
- Sohrabi, M.; Zhang, L.; Zhang, K.; Ahmetagic, A.; Wei, M.Q. Volatile organic compounds as novel markers for the detection of bacterial infections. Clin. Microbiol. 2014, 3, 2. [Google Scholar] [CrossRef]
- Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M.; et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9, 348. [Google Scholar] [CrossRef] [PubMed]
- Cope, K.; Risby, T.; Diehl, A.M. Increased gastrointestinal ethanol production in obese mice: Implications for fatty liver disease pathogenesis. Gastroenterology 2000, 119, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Minh, T.D.C.; Blake, D.R.; Galassetti, P.R. The clinical potential of exhaled breath analysis for diabetes mellitus. Diabetes Res. Clin. Pract. 2012, 97, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Ulanowska, A.; Kowalkowski, T.; Cieśliński, K. Investigation of lung cancer biomarkers by hyphenated separation techniques and chemometrics. Clin. Chem. Lab. Med. 2012, 50, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Senthilmohan, S.T.; McEwan, M.J.; Wilson, P.F.; Milligan, D.B.; Freeman, C.G. Real time analysis of breath volatiles using SIFT-MS in cigarette smoking. Redox Rep. 2001, 6, 185–187. [Google Scholar] [CrossRef]
- Phillips, M.; Greenberg, J.; Martinez, V. Endogenous breath ethanol concentrations in abstinent alcohol abusers and normals. Alcohol 1988, 5, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Miekisch, W.; Schubert, J.K. From highly sophisticated analytical techniques to life-saving diagnostics: Technical developments in breath analysis. TrAC Trends Anal. Chem. 2006, 25, 665–673. [Google Scholar] [CrossRef]
- Mule, N.M.; Patil, D.D.; Kaur, M. A comprehensive survey on investigation techniques of exhaled breath (EB) for diagnosis of diseases in human body. Inform. Med. Unlocked 2021, 26, 100715. [Google Scholar] [CrossRef]
- Konvalina, G.; Haick, H. Sensors for breath testing: From nanomaterials to comprehensive disease detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef]
- Casalinuovo, S.; Buzzin, A.; Caschera, D.; Quaranta, S.; Federici, F.; Zortea, L.; Brotzu, A.; Natali, S.; Puglisi, D.; de Cesare, G.; et al. AuNP-Coated Cotton as VOC Sensor for Disease Detection from Breath. In Proceedings of the Annual Meeting of the Italian Electronics Society (SIE), Pizzo, Italy, 7–9 September 2022. [Google Scholar] [CrossRef]
- Casalinuovo, S.; Buzzin, A.; Caschera, D.; Quaranta, S.; Federici, F.; Puglisi, D.; de Cesare, G.; Caputo, D. Enhancing Breath Analysis with a Novel AuNP-Coated Cotton Sensor. In Proceedings of the 2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI), Monopoli, Italy, 8–9 June 2023. [Google Scholar] [CrossRef]
- Kincal, D.; Kumar, A.; Child, A.D.; Reynolds, J.R. Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synth. Met. 1998, 92, 53–56. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Tu, H.L.; Pang, Y.; Wei, F.; Zhao, H.B.; Yang, Y.; Ren, T.L. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020, 39, 651–658. [Google Scholar] [CrossRef]
- Saha, R.K.; Debanath, M.K. Synthesis and study of optical properties of microstructure flower-shaped ZnO. Adv. Mater. Lett. 2018, 9, 494–498. [Google Scholar] [CrossRef]
- Heo, J.H.; Kim, K.I.; Cho, H.H.; Lee, J.W.; Lee, B.S.; Yoon, S.; Park, K.J.; Lee, S.; Kim, J.; Whang, D.; et al. Ultrastable-stealth large gold nanoparticles with DNA directed biological functionality. Langmuir 2015, 31, 13773–13782. [Google Scholar] [CrossRef] [PubMed]
- Casalinuovo, S.; Buzzin, A.; Mastrandrea, A.; Mazzetta, I.; Barbirotta, M.; Iannascoli, L.; Nascetti, A.; de Cesare, G.; Puglisi, D.; Caputo, D. 3D-Printed Face Mask with Integrated Sensors as Protective and Monitoring Tool. In Proceedings of the AISEM Annual Conference on Sensors and Microsystems, Online Conference, 10–11 February 2022. [Google Scholar] [CrossRef]
- Fraschetti, E.; Puglisi, D.; Domènech-Gil, G.; Buzzin, A.; Mastrandrea, A.; Mazzetta, I.; de Cesare, G.; Casalinuovo, S.; Quaranta, S.; Caputo, D. Characterization of Disposable Facemasks for COVID-19 Through Colorimetric Analysis. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Rome, Italy, 21–24 September 2021. [Google Scholar] [CrossRef]
- Caschera, D.; Federici, F.; Zane, D.; Focanti, F.; Curulli, A.; Padeletti, G. Gold nanoparticles modified GC electrodes: Electrochemical behavior dependence of different neurotransmitters and molecules of biological interest on the particle’s size and shape. J. Nanoparticle Res. 2009, 11, 1925–1936. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Gannimani, R.; Perumal, A.; Krishna, S.; Sershen, M.; Mishra, A.; Govender, P. Synthesis and antibacterial activity of silver and gold nanoparticles produced using aqueous seed extract of Protorhus longifolia as a reducing agent. Dig. J. Nanomater. Biostructures 2014, 9, 1669–1679. [Google Scholar]
- Caschera, D.; Toro, R.G.; Federici, F.; Riccucci, C.; Ingo, G.M.; Gigli, G.; Cortese, B. Flame retardant properties of plasma pre-treated/diamond-like carbon (DLC) coated cotton fabrics. Cellulose 2015, 22, 2797–2809. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef]
- Gieroba, B.; Kalisz, G.; Krysa, M.; Khalavka, M.; Przekora, A. Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. Int. J. Mol. Sci. 2023, 24, 2630. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Farwell, D.W.; Williams, A.C. FT-Raman spectrum of cotton: A polymeric biomolecular analysis. Spectrochim. Acta Part A: Mol. Spectrosc. 1994, 50, 807–811. [Google Scholar] [CrossRef]
- Kremer, F.; Huwe, A.; Schönhals, A.; Różański, S.A. Molecular Dynamics in Confining Space. In Broadband Dielectric Spectroscopy; Kremer, F., Schönhals, A., Eds.; Springer Nature: Heidelberg, Germany, 2003; pp. 171–224. [Google Scholar] [CrossRef]
- Bonyár, A.; Lednický, T.; Hubálek, J. LSPR nanosensors with highly ordered gold nanoparticles fabricated on nanodimpled aluminium templates. Procedia Eng. 2016, 168, 1160–1163. [Google Scholar] [CrossRef]
- Jeon, H.B.; Tsalu, P.V.; Ha, J.W. Shape effect on the refractive index sensitivity at localized surface plasmon resonance inflection points of single gold nanocubes with vertices. Sci. Rep. 2019, 9, 13635. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qiao, X.; Chen, J.; Wang, X.; Ding, S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 2005, 94, 449–453. [Google Scholar] [CrossRef]
- Podgornov, F.V.; Wipf, R.; Stühn, B.; Ryzhkova, A.V.; Haase, W. Low-frequency relaxation modes in ferroelectric liquid crystal/gold nanoparticle dispersion: Impact of nanoparticle shape. Liq. Cryst. 2016, 43, 1536–1547. [Google Scholar] [CrossRef]
- Toor, A.; So, H.; Pisano, A.P. Dielectric properties of ligand-modified gold nanoparticle/SU-8 photopolymer based nanocomposites. Appl. Surf. Sci. 2017, 414, 373–379. [Google Scholar] [CrossRef]
- Kushwah, M.; Sagar, R.; Rogachev, A.A.; Gaur, M.S. Dielectric, pyroelectric and polarization behavior of polyvinylidene fluoride (PVDF)-gold nanoparticles (AuNPs) nanocomposites. Vacuum 2019, 166, 298–306. [Google Scholar] [CrossRef]
- Mahendia, S.; Goyal, P.K.; Tomar, A.K.; Chahal, R.P.; Kumar, S. Study of dielectric behavior and charge conduction mechanism of Poly (Vinyl alcohol)(PVA)-Copper (Cu) and Gold (Au) nanocomposites as a bio-resorbable material for organic electronics. J. Electron. Mater. 2016, 45, 5418–5426. [Google Scholar] [CrossRef]
- Chen, B.D.; Tang, W.; Zhang, C.; Xu, L.; Zhu, L.P.; Yang, L.J.; He, C.; Chen, J.; Liu, L.; Wang, Z.L. Au nanocomposite enhanced electret film for triboelectric nanogenerator. Nano Res. 2018, 11, 3096–3105. [Google Scholar] [CrossRef]
- Cortie, M.B.; Zareie, M.H.; Ekanayake, S.R.; Ford, M.J. Conduction, storage, and leakage in particle-on-SAM nanocapacitors. IEEE Trans. Nanotechnol. 2005, 4, 406–414. [Google Scholar] [CrossRef]
- Morsi, M.A.; Oraby, A.H.; Elshahawy, A.G.; Abd El-Hady, R.M. Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. J. Mater. Res. Technol. 2019, 8, 5996–6010. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Elashmawi, I.S.; Al-Shamari, A.A.; Alnattar, H. Dielectric behavior and AC conductivity of PEO/CMC polymer blend incorporated with gold nanoparticles produced by laser ablation. J. Mater. Sci. Mater. Electron. 2023, 34, 388. [Google Scholar] [CrossRef]
- Gaabour, L.H.; Hamam, K.A. The modification and development of the spectroscopic properties of Cs/PVA blend incorporated gold nanoparticles (AuNPs) prepared by pulsed laser ablation in liquids (PLAL). Dig. J. Nanomater. Biostructures 2020, 15, 973–983. [Google Scholar] [CrossRef]
- Jonscher, A.K. Relaxation in low-loss dielectrics. J. Mol. Liq. 2000, 86, 259–268. [Google Scholar] [CrossRef]
- Bakkali, H.; Dominguez, M.; Batlle, X.; Labarta, A. Universality of the electrical transport in granular metals. Sci. Rep. 2016, 6, 29676. [Google Scholar] [CrossRef]
- Abdelrazek, E.M.; Abdelghany, A.M.; Tarabiah, A.E.; Zidan, H.M. AC conductivity and dielectric characteristics of PVA/PVP nanocomposite filled with MWCNTs. J. Mater. Sci. Mater. Electron. 2019, 30, 15521–15533. [Google Scholar] [CrossRef]
- Jonscher, A.K. Dielectric relaxation in solids. J. Phys. D: Appl. Phys. 1999, 32, R57. [Google Scholar] [CrossRef]
- Tsonos, C. Comments on frequency dependent AC conductivity in polymeric materials at low frequency regime. Curr. Appl. Phys. 2019, 19, 491–497. [Google Scholar] [CrossRef]
- Dhahri, A.; Dhahri, E.; Hlil, E.K. Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. Rsc Adv. 2018, 8, 9103–9111. [Google Scholar] [CrossRef]
- Elmelouky, A.; Mortadi, A.; Chahid, E.; Elmoznine, R. Experimental and Theoretical Study of the Adsorption Behavior of Nitrate Ions by Layered Double Hydroxide Using Impedance Spectroscopy. In Electrochemical Impedance Spectroscopy; El-Azazy, M., Min, M., Annus, P., Eds.; IntechOpen: Rijeka, Croatia, 2020; pp. 113–137. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, Y.; Han, J. A flexible nanocomposite membrane based on traditional cotton fabric to enhance performance of microbial fuel cell. Fibers Polym. 2017, 18, 1296–1303. [Google Scholar] [CrossRef]
- DePonte, M.C.; Wilke, J.A.; Boyle, D.T.; Gillum, M.Z.; Schlosser, D.A.; Lam, V.H.; Kaleem, H.; Maxwell, E.M.; Baber, A.E. Low–temperature exchange of hydrogen and deuterium between molecular ethanol and water on Au (111). Surf. Sci. 2019, 680, 1–5. [Google Scholar] [CrossRef]
- Dielectric Characterization and Reference Materials. Available online: https://www.nist.gov/publications/dielectric-characterization-and-reference-materials?pub_id=15597 (accessed on 5 July 2023).
- Bhowmik, B.; Dutta, K.; Hazra, A.; Bhattacharyya, P. Low temperature acetone detection by p-type nano-titania thin film: Equivalent circuit model and sensing mechanism. Solid-State Electron. 2014, 99, 84–92. [Google Scholar] [CrossRef]
- Bockris, J.O.M.; Reddy, A.K.N. Ion-Solvent Interactions. In Modern Electrochemistry 1; Springer: Boston, MA, USA, 2002. [Google Scholar] [CrossRef]
- Tommalieh, M.J.; Awwad, N.S.; Ibrahium, H.A.; Menazea, A.A. Characterization and electrical enhancement of PVP/PVA matrix doped by gold nanoparticles prepared by laser ablation. Radiat. Phys. Chem. 2021, 179, 109195. [Google Scholar] [CrossRef]
- Park, J.W.; Shumaker-Parry, J.S. Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. J. Am. Chem. Soc. 2014, 136, 1907–1921. [Google Scholar] [CrossRef] [PubMed]
- Kan, C.; Wang, C.; Zhu, J.; Li, H. Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel. J. Solid State Chem. 2010, 183, 858–865. [Google Scholar] [CrossRef]
- Saidi, W.A.; Feng, H.; Fichthorn, K.A. Binding of polyvinylpyrrolidone to Ag surfaces: Insight into a structure-directing agent from dispersion-corrected density functional theory. J. Phys. Chem. C 2013, 117, 1163–1171. [Google Scholar] [CrossRef]
- Curry, D.; Cameron, A.; MacDonald, B.; Nganou, C.; Scheller, H.; Marsh, J.; Beale, S.; Lu, M.; Shan, Z.; Kaliaperumal, R.; et al. Adsorption of doxorubicin on citrate-capped gold nanoparticles: Insights into engineering potent chemotherapeutic delivery systems. Nanoscale 2015, 7, 19611–19619. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casalinuovo, S.; Caschera, D.; Quaranta, S.; Genova, V.; Buzzin, A.; Federici, F.; de Cesare, G.; Puglisi, D.; Caputo, D. Gold Nanoparticles-Functionalized Cotton as Promising Flexible and Green Substrate for Impedometric VOC Detection. Materials 2023, 16, 5826. https://doi.org/10.3390/ma16175826
Casalinuovo S, Caschera D, Quaranta S, Genova V, Buzzin A, Federici F, de Cesare G, Puglisi D, Caputo D. Gold Nanoparticles-Functionalized Cotton as Promising Flexible and Green Substrate for Impedometric VOC Detection. Materials. 2023; 16(17):5826. https://doi.org/10.3390/ma16175826
Chicago/Turabian StyleCasalinuovo, Silvia, Daniela Caschera, Simone Quaranta, Virgilio Genova, Alessio Buzzin, Fulvio Federici, Giampiero de Cesare, Donatella Puglisi, and Domenico Caputo. 2023. "Gold Nanoparticles-Functionalized Cotton as Promising Flexible and Green Substrate for Impedometric VOC Detection" Materials 16, no. 17: 5826. https://doi.org/10.3390/ma16175826
APA StyleCasalinuovo, S., Caschera, D., Quaranta, S., Genova, V., Buzzin, A., Federici, F., de Cesare, G., Puglisi, D., & Caputo, D. (2023). Gold Nanoparticles-Functionalized Cotton as Promising Flexible and Green Substrate for Impedometric VOC Detection. Materials, 16(17), 5826. https://doi.org/10.3390/ma16175826