materials-logo

Journal Browser

Journal Browser

Gold Nanoparticles: Synthesis, Properties, and Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Nanomaterials and Nanotechnology".

Deadline for manuscript submissions: closed (20 August 2023) | Viewed by 1873

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
Interests: metals in biology and catalysis; metallodrugs; metallogels; sensing and porous materials

Special Issue Information

Dear Colleagues,

Since the discovery of the catalytic properties of gold, particularly gold nanoparticles, in the 1980s, much attention has been given to the generation and stabilization of gold nanoparticles via different methods. While gold nanoparticles can have different dimensions, they can also take various shapes, such as icosahedra and face-centered cubic polyhedra. Application-wise, in catalysis, gold nanoparticles can act as oxidation catalysts to CO, alkenes, and alcohols. In contrast, selective hydrogenation reactions towards unsaturated hydrocarbons, alpha- and beta-unsaturated aldehyde and ketones, and nitro compounds are also reported. The size and shape of nanoparticles and nanoclusters also dictate the utility of gold in the field of electrocatalysis in several reactions, including alcohol and formic acid oxidation, water splitting, hydrogen evolution, and oxygen reduction reaction, etc. The nature of support to the gold nanoparticles also plays a vital role in catalytic processes. In the field of biology, gold nanoparticles have shown the capacity to work as cell imaging agents, biosensors, diagnostic tools, as well as in cancer chemotherapy.  

This Special Issue on “Gold Nanoparticles: Synthesis, Properties, and Applications” focuses on the generation and stabilization of gold nanoparticles in different supports and mediums and their related properties. Various applications of such gold nanoparticles in different fields in all disciplines and with multidisciplinary aspects will also be covered in this issue. Full papers, reviews, and communications are all welcome.

Prof. Dr. Suman Mukhopadhyay
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gold nanoparticle synthesis and stabilization
  • gold nanoparticle properties
  • catalysis
  • sensing
  • cell imaging and diagnosis
  • gold nanoparticles as nanomedicines

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3872 KiB  
Article
Gold Nanoparticles-Functionalized Cotton as Promising Flexible and Green Substrate for Impedometric VOC Detection
by Silvia Casalinuovo, Daniela Caschera, Simone Quaranta, Virgilio Genova, Alessio Buzzin, Fulvio Federici, Giampiero de Cesare, Donatella Puglisi and Domenico Caputo
Materials 2023, 16(17), 5826; https://doi.org/10.3390/ma16175826 - 25 Aug 2023
Cited by 4 | Viewed by 1347
Abstract
This work focuses on the possible application of gold nanoparticles on flexible cotton fabric as acetone- and ethanol-sensitive substrates by means of impedance measurements. Specifically, citrate- and polyvinylpyrrolidone (PVP)-functionalized gold nanoparticles (Au NPs) were synthesized using green and well-established procedures and deposited on [...] Read more.
This work focuses on the possible application of gold nanoparticles on flexible cotton fabric as acetone- and ethanol-sensitive substrates by means of impedance measurements. Specifically, citrate- and polyvinylpyrrolidone (PVP)-functionalized gold nanoparticles (Au NPs) were synthesized using green and well-established procedures and deposited on cotton fabric. A complete structural and morphological characterization was conducted using UV–VIS and Fourier transform infrared (FT–IR) spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). A detailed dielectric characterization of the blank substrate revealed interfacial polarization effects related to both Au NPs and their specific surface functionalization. For instance, by entirely coating the cotton fabric (i.e., by creating a more insulating matrix), PVP was found to increase the sample resistance, i.e., to decrease the electrical interconnection of Au NPs with respect to citrate functionalized sample. However, it was observed that citrate functionalization provided a uniform distribution of Au NPs, which reduced their spacing and, therefore, facilitated electron transport. Regarding the detection of volatile organic compounds (VOCs), electrochemical impedance spectroscopy (EIS) measurements showed that hydrogen bonding and the resulting proton migration impedance are instrumental in distinguishing ethanol and acetone. Such findings can pave the way for the development of VOC sensors integrated into personal protective equipment and wearable telemedicine devices. This approach may be crucial for early disease diagnosis based on nanomaterials to attain low-cost/low-end and easy-to-use detectors of breath volatiles as disease markers. Full article
(This article belongs to the Special Issue Gold Nanoparticles: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

Back to TopTop