Evaluation of Fracture Resistance of Occlusal Veneers Made of Different Types of Materials Depending on Their Thickness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Abutment
2.2. Preparation of Restorations
2.3. Luting
2.4. Compressive Strength Test
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Occlusal veneers made of zirconium oxide and lithium disilicate ceramics had the highest fracture resistance values. Restorations made of leucite ceramics turned out to be the least resistant to forces.
- The greater the thickness of the ceramic occlusal veneers, the greater their fracture resistance. The thickness of occlusal veneers made of zirconium oxide ceramics can be limited to 1 mm. Hybrid ceramic and lithium disilicate veneers should be at least 1.5 mm thick on the occlusal surface to withstand the forces occurring in the mouth. For strength reasons, it is not recommended to make occlusal veneers from leucite ceramics, and if they are to be used, their thickness should be 2 mm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warreth, A.; Abuhijleh, E.; Almaghribi, M.A.; Mahwal, G.; Ashawish, A. Tooth surface loss: A review of literature. Saudi Dent. J. 2020, 32, 53–60. [Google Scholar] [CrossRef]
- Majewski, S. Współczesna Protetyka Stomatologiczna; Elsevier Urban & Partner: Wrocław, Poland, 2014. [Google Scholar]
- Ioannidis, A.; Mühlemann, S.; Özcam, M.; Hüsler, J.; Hämmerle, C.H.F.; Benic, G.I. Ultra-thin occlusal veneers bonded to enamel and made of ceramic or hybrid materials exhibit load-bearing capacities not different from conventional restorations. J. Mech. Behav. Biomed. Mater. 2019, 90, 433–440. [Google Scholar] [CrossRef]
- Pryliński, M. Vademecum Materiałoznawstwa Protetycznego; Med Tour Press International: Otwock, Poland, 2020. [Google Scholar]
- Dejak, B.; Kacprzak, M.; Suliborski, B.; Śmielak, B. Structure and some properties of dental ceramics used in all-ceramics restorations based on literature. Protet. Stomatol. 2006, 6, 471–477. [Google Scholar]
- Okoński, P.; Lasek, K.; Mierzwińska-Nastalska, E. Clinical application of selected ceramic materials. Protet. Stomatol. 2012, 3, 181–189. [Google Scholar] [CrossRef]
- Bajraktarova-Valjakova, E.; Korunoska-Stevkovska, V.; Kapusevska, B.; Gigovski, N.; Bajratkova-Misevska, C.; Grozdanov, A. Contemporary dental ceramic materials, a review: Chemical composition, physical and mechanical properties, indication for use. Maced. J. Med. Sci. 2018, 6, 1742–1755. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Elnaghy, A.M. Mechanical properties of zirconia reinforced lithium silisate glass-ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef]
- Dejak, B.; Langot, C.; Krasowski, M.; Konieczny, B. Comparison of fracture resistance of monolithic thin-walled and full-contour zirconia crowns. Protet. Stomatol. 2016, 66, 12–19. [Google Scholar] [CrossRef]
- Manziuc, M.; Gasparik, C.; Negucioiu, M.; Constantiniuc, M.; Alexandru, B.; Vlas, I.; Dudea, D. Optical properties of translucent zirconia, A review of the literature. EuroBiotech J. 2019, 3, 45–51. [Google Scholar] [CrossRef]
- Stępień, J.M.; Dejak, B. Ceramika hybrydowa—Przegląd piśmiennictwa. Protet. Stomatol. 2020, 70, 369–374. [Google Scholar] [CrossRef]
- Egbert, J.S.; Johnson, A.; Tantbirojn, D.; Versluis, A. Fracture strenght of ultrathin occlusal restorations made from CAD/CAM composite or hybrid ceramic materials. Oral Sci. Int. 2015, 12, 53–58. [Google Scholar] [CrossRef]
- Dirxen, C.H.; Blunck, U.; Preissner, S. Clinical performance of a new biomimetic double network material. Open Dent. J. 2013, 7, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Schlichting, L.H.; Resende, T.H.; Reis, K.R.; Raybolt Dos Santos, A.; Correa, I.C.; Magne, P. Ultrathin CAD-CAM glass-ceramic and composite resin occlusal veneers for the treatment of severe dental erosion: An up to 3-year randomized clinical trial. J. Prosthet. Dent. 2022, 128, 158.e1–158.e12. [Google Scholar] [CrossRef] [PubMed]
- Mueller, B.; Pilecco, R.O.; Valandro, L.F.; Ruschel, V.C.; Pereira, G.K.R.; Bernardon, J.K. Effect of immediate dentin sealing on load-bearing capacity under accelerated fatigue of thin occlusal veneers made of CAD-CAM glass-ceramic and resin composite material. Dent. Mater. 2023, 39, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Heck, K.; Paterno, H.; Lederer, A.; Litzenburger, F.; Hickel, R.; Kunzelmann, K.H. Fatigue resistance of ultrathin CAD/CAM ceramic and nanoceramic composite occlusal veneers. Dent. Mater. 2019, 35, 1370–1377. [Google Scholar] [CrossRef]
- Comba, A.; Baldi, A.; Carossa, M.; Tempesta, R.M.; Garino, E.; Llubani, X.; Rozzi, D.; Mikonis, J.; Paolone, G.; Scotti, N. Post-fatigue fracture resistance of lithium disilicate and polymer-infiltrated ceramic network indirect restorations over endodontically-treated molars with different preparation designs: An invitro study. Polymers 2022, 14, 5084. [Google Scholar] [CrossRef]
- Dejak, B. Vademecum Wykonania Protez Stałych I Ruchomych; Med Tour Press International: Otwock, Poland, 2020. [Google Scholar]
- Valenzuela, E.B.S.; Andrade, J.P.; da Cunha, P.F.J.S.; Bittencourt, H.R.; Spohr, A.M. Fracture load of CAD/CAM ultrathin occlusal veneers luted to enamel or dentin. J. Esthet. Restor. Dent. 2021, 33, 516–521. [Google Scholar] [CrossRef]
- Johnson, A.C.; Versluis, A.; Tantbirojn, D.; Ahuja, S. Fracture strenght of CAD/CAM composite and composite-ceramic occlusal veneers. J. Prosthodont. Res. 2014, 58, 107–114. [Google Scholar] [CrossRef]
- Essam, N.; Soltan, H.; Attia, A. Influence of thickness and surface conditioning on fracture resistance of occlusal veneer. BMC Oral Health 2023, 23, 258. [Google Scholar] [CrossRef]
- Zahran, M.; El-Farag, S.A.; Soltan, H.; Ahmed, A. Fracture load of ultrathin occlusal veneers: Effect of thickness and surface conditioning. J. Mech. Behav. Biomed. Mater. 2023, 145, 106030. [Google Scholar] [CrossRef]
- Sasse, M.; Krummel, A.; Klosa, K.; Kern, M. Influence of restoration thickness and dental bonding surface on the fracture resistance of full-coverage occlusal veneers made from lithium disilicate ceramic. Dent. Mater. 2015, 31, 907–915. [Google Scholar] [CrossRef]
- Maeder, M.; Pasic, P.; Ender, A.; Özcan, M.; Benic, G.I.; Ioannidis, A. Load-bearing capacities of ultra-thin occlusal veneers bonded to dentin. J. Mech. Behav. Biomed. Mater. 2019, 95, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Tribst, J.P.M.; Dal Piva, A.M.O.; Penteado, M.M.; Borges, A.L.S.; Bottino, M.A. Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers. Braz. Oral Res. 2018, 32, e118. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hong, N.; Zou, L.; Wu, S.; Li, Y. Estimation of stress distribution and risk of failure for maxillary premolar restored by occlusal veneer with different CAD/CAM materials and preparation designs. Clin. Oral Investig. 2020, 24, 3157–3167. [Google Scholar] [CrossRef] [PubMed]
- Ash, M.; Nelson, S. Wheeler’s Anatomy Physiology and Occlusion, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 245, 456. [Google Scholar]
- Al-Zordk, W.; Ali, A.I. Retention strength of zirconia occlusal veneer restoration. Int. J. Esthet. Dent. 2023, 18, 292–308. [Google Scholar] [PubMed]
- Denry, I.; Kelly, R.J. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef]
- Della Bona, A.; Corazza, P.H.; Zhang, Y. Characterization of a polymer-infiltrated ceramic-network material. Dent. Mater. 2014, 30, 564–569. [Google Scholar] [CrossRef]
- Guazzato, M.; Albakry, M.; Ringer, S.P.; Swain, M.V. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent. Mater. 2004, 20, 449–456. [Google Scholar] [CrossRef]
- Shenoy, A.; Shenoy, N. Dental ceramics: An update. J. Conserv. Dent. 2010, 13, 195–203. [Google Scholar] [CrossRef]
- Al-Akhali, M.; Chaar, M.S.; Elsayed, A.; Samran, A.; Kern, M. Frecture resistance of ceramic and polymer-based occlusal veneer restorations. J. Mech. Behav. Biomed. Mater. 2017, 74, 245–250. [Google Scholar] [CrossRef]
- Al-Akhali Kern, M.; Elsayed, A.; Samran, A.; Chaar, M.S. Influence of thermomechanical fatigue on the fracture strenght of CAD-CAM fabricated occlusal veneers. J. Prosthet. Dent. 2019, 121, 644–650. [Google Scholar] [CrossRef]
- Albelasy, E.; Hamama, H.H.; Tsoi, J.K.H.; Mahmmoud, S.H. Influence of material type, thickness and storage on fracture resistance of CAD/CAM occlusal veneers. J. Mech. Behav. Biomed. Mater. 2021, 119, 104485. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.P.; Stona, D.; Bittencourt, H.R.; Borges, G.A.; Burnett Junior, L.H.; Spohr, A.M. Effect of different computer-aided design/computer-aided manufacturing (CAD/CAM) materials and thicknesses on the fracture resistance of occlusal veneers. Oper. Dent. 2018, 43, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Al-Zordk, W.; Saudi, A.; Abdelkader, A.; Taher, M.; Ghazy, M. Fracture resistance and failure mode of mandibular molar restored by occlusal veneer: Effect of material type and dental bonding surface. Materials 2021, 14, 6476. [Google Scholar] [CrossRef] [PubMed]
- Saczuk, K.; Wilmont, P.; Pawlak, Ł.; Łukomska-Szymańska, M. Bruksizm—Etiologia i diagnostyka—Przegląd piśmiennictwa. Protet. Stomatol. 2018, 68, 456–463. [Google Scholar] [CrossRef]
- Lavigne, G.J.; Khoury, S.; Abe, S.; Yamaguchi, T.; Raphael, K. Bruxism physiology and pathology: An overview for clinicians. J. Oral Rehabil. 2008, 35, 476–494. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Carossa, M.; Comba, A.; Alovisi, M.; Femiano, F.; Pasqualini, D.; Berutti, E.; Scotti, N. Wear Behavior of polymer-infiltrated network ceramics, lithium disilicate and cubic zirconia against enamel in a bruxism-simulated scenario. Biomedicines 2022, 10, 1682. [Google Scholar] [CrossRef]
- Singh, S.; Utreja, A.K.; Sandhu, N.; Dhaliwal, Y.S. An innovative miniature bite force recorder. Int. J. Clin. Pediatr. Dent. 2011, 4, 113–118. [Google Scholar] [CrossRef]
- de Abreu, R.A.M.; Pereira, M.D.; Furtado, F.; Prado, G.P.R.; Mestriner, W., Jr.; Ferreira, L.M. Masticatory efficiency and bite force in individuals with normal occlusion. Arch. Oral Biol. 2014, 59, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
Leucite Ceramic (LC) | Lithium Disilicate Ceramic (LDC) | Zirconia Reinforced Lithium Silicate Ceramic (ZORLSC) | Zirconium Dioxide Ceramic (ZOC) | Hybrid Ceramic (HC) | Nanoceramic (NC) | |
---|---|---|---|---|---|---|
Hardness (according to Vickers) (GPa) | 6.6 | 5.3 | 6.5 | 13 | 2.5 | 2.6 |
Elastic modulus (GPa) | 65–71 | 103 | 105 | 210 | 35–37 | 12 |
Flexural strength (MPa) | 109–182 | 330–400 | 440 | 900–1200 | 150 | 160 |
Composition | tetragonal leucite crystals embedded in a glassy, amorphous mass of silica | needle-shaped lithium disilicate crystals 0.5 μm wide and 4 μm long, and lithium orthophosphate, embedded in silica | lithium silicate crystals with the addition of zirconium dioxide, which constitutes 10–11% of its mass and silica matrix | 99% densely sintered zirconium dioxide crystals | ceramic mesh (86% by weight) consisting of silica (58–63%) and aluminum oxide (20–23%) impregnated with UDMA resin, TEGDMA (14% by weight) | silanized silica (diameter of 20 nm) and zirconium (diameter of 4 to 11 nm) crystals grouped in nanoclusters embedded in resin |
Abutment Preparation | Occlusal Veneers Preparation | Cementation | |||
---|---|---|---|---|---|
LC | Chewing surfaces of all abutments were sandblasted with 50 μm grain diameter alumina under a pressure of 3.5 bar | Two separate layers of All Bond Universal (Bisco) were rubbed in for 10–15 s and then blown with a blower. After application, the bond was exposed to the light of a curing lamp for 10 s | Etched with 9% hydrofluoric acid for 60 s | Two layers of Porcelain Primer silane (Bisco) applied to the etched surfaces, left for 30 s and gently blown out. Subsequently, one layer of the All Bond Universal (Bisco) bonding system applied and blown. The restoration surfaces prepared in this way were treated with the light of a curing lamp for 10 s in accordance with the manufacturer’s recommendations | Duo-Link Universal (Bisco) was applied to the surface of the abutments and the restorations, light cured for 2–3 s on each side, excess removed, additionally light cured for 40 s on each side |
LDC | Etched with 4.5% hydrofluoric acid for 20 s | ||||
HC | Etched with 4.5% hydrofluoric acid for 60 s | ||||
ZDC | Sandblasted with aluminum oxide with a grain diameter of 50 μm at a pressure of 3.5 bar | Two layers of Z-PRIME Plus (Bisco) zirconium oxide ceramic primer were applied to the restorations |
Material | 1 mm | 1.5 mm | 2 mm | SIG. |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||
Leucite ceramic (LC) | 257.00 ± 52.60 | 424.30 ± 82.90 | 499.89 ± 73.89 | p < 0.05; p = 0.00000 |
1 mm < 1.5 mm; p = 0.00014 | ||||
1 mm < 2 mm; p = 0.00000 | ||||
Hybrid Ceramic (HC) | 449.70 ± 236.20 | 509.10 ± 42.35 | 576.60 ± 80.63 | p < 0.05; p = 0.0273 |
1 mm < 2 mm; p = 0.000558 | ||||
Lithium disilicate ceramic (LDC) | 456.10 ± 67.79 | 658.90 ± 99.52 | 1044.4 ± 111.20 | p < 0.05; p = 0.00000 |
1 mm < 1.5 mm; p = 0.00024 | ||||
1 mm < 2 mm; p = 0.00000 | ||||
1.5 < 2 mm; p = 0.00000 | ||||
Zirconium dioxide ceramic (ZDC) | 1086.1 ± 239.75 | 1640.0 ± 200.33 | 1569.0 ± 252.34 | p < 0.05; p = 0.000002 |
1 mm < 1.5 mm; p = 0.00006 | ||||
1 mm < 2 mm; p = 0.00035 | ||||
SIG. | p < 0.05; p = 0.0001 | p < 0.05; p = 0.0000 | p < 0.05; p = 0.0000 | |
ZDC > LC; p = 0.00000 | ZDC > LC; p = 0.00001 | ZDC > LC; p = 0.00001 | ||
ZDC > HC; p = 0.00415 | ZDC > HC; p = 0.00035 | ZDC > HC; p = 0.00010 | ||
LDC > LC; p = 0.01443 | LDC > LC; p = 0.01506 | LDC > LC; p = 0.00541 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czechowski, Ł.; Dejak, B.; Konieczny, B.; Krasowski, M. Evaluation of Fracture Resistance of Occlusal Veneers Made of Different Types of Materials Depending on Their Thickness. Materials 2023, 16, 6006. https://doi.org/10.3390/ma16176006
Czechowski Ł, Dejak B, Konieczny B, Krasowski M. Evaluation of Fracture Resistance of Occlusal Veneers Made of Different Types of Materials Depending on Their Thickness. Materials. 2023; 16(17):6006. https://doi.org/10.3390/ma16176006
Chicago/Turabian StyleCzechowski, Łukasz, Beata Dejak, Bartłomiej Konieczny, and Michał Krasowski. 2023. "Evaluation of Fracture Resistance of Occlusal Veneers Made of Different Types of Materials Depending on Their Thickness" Materials 16, no. 17: 6006. https://doi.org/10.3390/ma16176006
APA StyleCzechowski, Ł., Dejak, B., Konieczny, B., & Krasowski, M. (2023). Evaluation of Fracture Resistance of Occlusal Veneers Made of Different Types of Materials Depending on Their Thickness. Materials, 16(17), 6006. https://doi.org/10.3390/ma16176006