Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO2 and ZrO2
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khoshman, J.M.; Kordesch, M.E. Optical Properties of A-HfO2 Thin Films. Surf. Coat. Technol. 2006, 201, 3530–3535. [Google Scholar] [CrossRef]
- Abromavičius, G.; Kičas, S.; Buzelis, R. High Temperature Annealing Effects on Spectral, Microstructural and Laser Damage Resistance Properties of Sputtered HfO2 and HfO2-SiO2 Mixture-Based UV Mirrors. Opt. Mater. 2019, 95, 109245. [Google Scholar] [CrossRef]
- Khan, S.B.; Zhang, Z.; Lee, S.L. Annealing Influence on Optical Performance of HfO2 Thin Films. J. Alloys Compd. 2020, 816, 152552. [Google Scholar] [CrossRef]
- Rubahn, K.; Ihlemann, J. UV-Laser Ablation of HFO2 Dielectric Layers on SiO2 for Mask Preparation. MRS Proc. 1998, 526, 137. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, S.; Zhao, Y.; Gao, W.; Shao, J.; Fan, R.; Wang, Y.; Fan, Z. High Laser-Induced Damage Threshold HfO2 Films Prepared by Ion-Assisted Electron Beam Evaporation. Appl. Surf. Sci. 2005, 243, 232–237. [Google Scholar] [CrossRef]
- Mangote, B.; Gallais, L.; Zerrad, M.; Lemarchand, F.; Gao, L.H.; Commandré, M.; Lequime, M. A High Accuracy Femto-/Picosecond Laser Damage Test Facility Dedicated to the Study of Optical Thin Films. Rev. Sci. Instrum. 2012, 83, 013109. [Google Scholar] [CrossRef] [Green Version]
- Sahraee, M.; Reza Fallah, H.; Zabolian, H.; Moradi, B.; Haji Mahmoodzade, M. Influence of Laser Conditioning on Laser Induced Damage Threshold of Single Layers of ZrO2 with Various Deposition Conditions. Opt. Spectrosc. 2015, 118, 627–630. [Google Scholar] [CrossRef]
- Tian, G.; Huang, J.; Wang, T.; He, H.; Shao, J. Microstructure and Laser-Induced Damage Threshold of ZrO2 Coatings Dependence on Annealing Temperature. Appl. Surf. Sci. 2005, 239, 201–208. [Google Scholar] [CrossRef]
- Smalakys, L.; Drobužaitė, E.; Momgaudis, B.; Grigutis, R.; Melninkaitis, A. Quantitative Investigation of Laser-Induced Damage Fatigue in HfO2 and ZrO2 Single Layer Coatings. Opt. Express 2020, 28, 25335. [Google Scholar] [CrossRef]
- Toftmann, B.; Doggett, B.; Budtz-Jørgensen, C.; Schou, J.; Lunney, J.G. Femtosecond Ultraviolet Laser Ablation of Silver and Comparison with Nanosecond Ablation. J. Appl. Phys. 2013, 113, 083304. [Google Scholar] [CrossRef]
- Oosterbeek, R.N.; Ashforth, S.; Bodley, O.; Simpson, M.C. Measuring the Ablation Threshold Fluence in Femtosecond Laser Micromachining with Vortex and Bessel Pulses. Opt. Express 2018, 26, 34558. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Tani, S.; Kuroda, R.; Kobayashi, Y. Precision Measurement of Ablation Thresholds with Variable Pulse Duration Laser. Appl. Phys. A 2020, 126, 582. [Google Scholar] [CrossRef]
- Schwarz, B.; Ritt, G.; Eberle, B. Impact of Threshold Assessment Methods in Laser-Induced Damage Measurements Using the Examples of CCD, CMOS, and DMD. Appl. Opt. 2021, 60, F39. [Google Scholar] [CrossRef]
- Solomon, J.M.; Ahmad, S.I.; Dave, A.; Lu, L.-S.; HadavandMirzaee, F.; Lin, S.-C.; Chen, S.-H.; Luo, C.-W.; Chang, W.-H.; Her, T.-H. Ultrafast Laser Ablation, Intrinsic Threshold, and Nanopatterning of Monolayer Molybdenum Disulfide. Sci. Rep. 2022, 12, 6910. [Google Scholar] [CrossRef]
- Cabalín, L.M.; Laserna, J.J. Experimental Determination of Laser Induced Breakdown Thresholds of Metals under Nanosecond Q-Switched Laser Operation. Spectrochim. Acta Part B Spectrosc. 1998, 53, 723–730. [Google Scholar] [CrossRef]
- Liang, J.; Liu, W.; Li, Y.; Luo, Z.; Pang, D. A Model to Predict the Ablation Width and Calculate the Ablation Threshold of Femtosecond Laser. Appl. Surf. Sci. 2018, 456, 482–486. [Google Scholar] [CrossRef]
- Doggett, B.; Lunney, J.G. Langmuir Probe Characterization of Laser Ablation Plasmas. J. Appl. Phys. 2009, 105, 033306. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Chertopalov, S.; Lancok, J.; Craciun, V. Langmuir Probe Technique for Plasma Characterization during Pulsed Laser Deposition Process. Coatings 2021, 11, 762. [Google Scholar] [CrossRef]
- Anoop, K.K.; Polek, M.P.; Bruzzese, R.; Amoruso, S.; Harilal, S.S. Multidiagnostic Analysis of Ion Dynamics in Ultrafast Laser Ablation of Metals over a Large Fluence Range. J. Appl. Phys. 2015, 117, 083108. [Google Scholar] [CrossRef]
- Chen, J.; Lunney, J.G.; Lippert, T.; Ojeda-G-P, A.; Stender, D.; Schneider, C.W.; Wokaun, A. Langmuir Probe Measurements and Mass Spectrometry of Plasma Plumes Generated by Laser Ablation of La0.4Ca0.6MnO3. J. Appl. Phys. 2014, 116, 073303. [Google Scholar] [CrossRef]
- Geohegan, D.B.; Puretzky, A.A. Laser Ablation Plume Thermalization Dynamics in Background Gases: Combined Imaging, Optical Absorption and Emission Spectroscopy, and Ion Probe Measurements. Appl. Surf. Sci. 1996, 96–98, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Irimiciuc, S.A.; Hodoroaba, B.C.; Bulai, G.; Gurlui, S.; Craciun, V. Multiple Structure Formation and Molecule Dynamics in Transient Plasmas Generated by Laser Ablation of Graphite. Spectrochim. Acta Part B Spectrosc. 2020, 165, 105774. [Google Scholar] [CrossRef]
- Anoop, K.K.; Harilal, S.S.; Philip, R.; Bruzzese, R.; Amoruso, S. Laser Fluence Dependence on Emission Dynamics of Ultrafast Laser Induced Copper Plasma. J. Appl. Phys. 2016, 120, 185901. [Google Scholar] [CrossRef]
- Desarkar, H.S.; Kumbhakar, P.; Mitra, A.K. Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique. Appl Nanosci 2012, 2, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Oujja, M.; Martín-García, L.; Rebollar, E.; Quesada, A.; García, M.A.; Fernández, J.F.; Marco, J.F.; de la Figuera, J.; Castillejo, M. Effect of Wavelength, Deposition Temperature and Substrate Type on Cobalt Ferrite Thin Films Grown by Pulsed Laser Deposition. Appl. Surf. Sci. 2018, 452, 19–31. [Google Scholar] [CrossRef]
- Burdt, R.A.; Tao, Y.; Tillack, M.S.; Yuspeh, S.; Shaikh, N.M.; Flaxer, E.; Najmabadi, F. Laser Wavelength Effects on the Charge State Resolved Ion Energy Distributions from Laser-Produced Sn Plasma. J. Appl. Phys. 2010, 107, 043303. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Bulgakov, A.v. Gas-Dynamic Effects of the Interaction between a Pulsed Laser-Ablation Plume and the Ambient Gas: Analogy with an Underexpanded Jet. J. Phys. D Appl. Phys. 1998, 31, 693–703. [Google Scholar] [CrossRef]
- Marine, W.; Bulgakova, N.M.N.M.; Patrone, L.; Ozerov, I. Electronic Mechanism of Ion Expulsion under UV Nanosecond Laser Excitation of Silicon: Experiment and Modeling. Appl. Phys. A 2004, 79, 771–774. [Google Scholar] [CrossRef] [Green Version]
- Irimiciuc, S.A.; Chertopalov, S.; Novotný, M.; Craciun, V.; Lancok, J. Understanding Pulsed Laser Deposition Process of Copper Halides via Plasma Diagnostics Techniques. J. Appl. Phys. 2021, 130, 243302. [Google Scholar] [CrossRef]
- Volfová, L.; Andrei Irimiciuc, S.; Chertopalov, S.; Hruška, P.; Čížek, J.; Vondráček, M.; Novotný, M.; Butterling, M.; Liedke, M.O.; Wagner, A.; et al. Tailoring Pulsed Laser Deposition Fabricated Copper Oxide Film by Controlling Plasma Parameters. Appl. Surf. Sci. 2023, 608, 155128. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Chertopalov, S.; Buryi, M.; Remeš, Z.; Vondráček, M.; Fekete, L.; Novotný, M.; Lancok, J. Investigations on the CuI Thin Films Production by Pulsed Laser Deposition. Appl. Surf. Sci. 2022, 606, 154868. [Google Scholar] [CrossRef]
- Lednev, N.V.; Pershin, M.S.; Obraztsova, D.E.; Kudryashov, I.S.; Bunkin, F.A.; Lednev, V.N.; Pershin, S.M.; Obraztsova, E.D.; Kudryashov, S.I.; Bunkin, A.F. Single-Shot and Single-Spot Measurement of Laser Ablation Threshold for Carbon Nanotubes. J. Phys. D Appl. Phys. 2013, 46, 052002. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.P.; Fedosejevs, R. Single-Shot Ablation Threshold of Chromium Using UV Femtosecond Laser Pulses. Appl. Phys. A 2014, 117, 1473–1478. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Chertopalov, S.; Bulíř, J.; Vondracek, M.; Fekete, L.; Jiricek, P.; Novotný, M.; Craciun, V.; Lancok, J. Insight into the Plasma Oxidation Process during Pulsed Laser Deposition. Plasma Process. Polym. 2022, 19, 2100102. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Gurlui, S.; Bulai, G.; Nica, P.; Agop, M.; Focsa, C. Langmuir Probe Investigation of Transient Plasmas Generated by Femtosecond Laser Ablation of Several Metals: Influence of the Target Physical Properties on the Plume Dynamics. Appl. Surf. Sci. 2017, 417, 108–118. [Google Scholar] [CrossRef]
- Torrisi, L.; Gammino, S. Method for the Calculation of Electrical Field in Laser-Generated Plasma for Ion Stream Production. Rev. Sci. Instrum. 2006, 77, 03B707. [Google Scholar] [CrossRef]
- Picciotto, A.; Krása, J.; Láska, L.; Rohlena, K.; Torrisi, L.; Gammino, S.; Mezzasalma, A.M.; Caridi, F. Plasma Temperature and Ion Current Analysis of Gold Ablation at Different Laser Power Rates. Nucl. Instrum. Methods Phys. Res. B 2006, 247, 261–267. [Google Scholar] [CrossRef]
- Margarone, D.; Torrisi, L.; Borrielli, A.; Caridi, F. Silver Plasma by Pulsed Laser Ablation. Plasma Sources Sci. Technol. 2008, 17, 035019. [Google Scholar] [CrossRef]
- Láska, L.; Krása, J.; Pfeifer, M.; Rohlena, K.; Gammino, S.; Torrisi, L.; Andò, L.; Ciavola, G. Generation of Intense Streams of Metallic Ions with a Charge State up to 10+ in a Laser Ion Source. Rev. Sci. Instrum. 2004, 75, 1575–1578. [Google Scholar] [CrossRef]
- Samsonov, G.V. The Oxide Handbook; Springer: New York, NY, USA, 1973. [Google Scholar]
- Ratzke, M.; Wolfframm, D.; Kappa, M.; Kouteva-Arguirova, S.; Reif, J. Pulsed laser deposition of HfO2 and PrxOy high-k films on Si(100). Appl. Surf. Sci. 2005, 247, 128–133. [Google Scholar] [CrossRef]
- Al-Kuhaili, M.; Durrani, S. Effect of annealing on pulsed laser deposited zirconium oxide thin films. J. Alloys Compd. 2011, 509, 9536–9541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udrea, R.; Irimiciuc, S.A.; Craciun, V. Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO2 and ZrO2. Materials 2023, 16, 536. https://doi.org/10.3390/ma16020536
Udrea R, Irimiciuc SA, Craciun V. Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO2 and ZrO2. Materials. 2023; 16(2):536. https://doi.org/10.3390/ma16020536
Chicago/Turabian StyleUdrea, Radu, Stefan Andrei Irimiciuc, and Valentin Craciun. 2023. "Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO2 and ZrO2" Materials 16, no. 2: 536. https://doi.org/10.3390/ma16020536
APA StyleUdrea, R., Irimiciuc, S. A., & Craciun, V. (2023). Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO2 and ZrO2. Materials, 16(2), 536. https://doi.org/10.3390/ma16020536