Kinetics and Thermodynamics of Adsorption for Aromatic Hydrocarbon Model Systems via a Coagulation Process with a Ferric Sulfate–Lime Softening System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Kinetic Studies
2.3. Thermodynamic Study of Adsorption
2.4. Coagulation Process
2.5. Optical Microscopy
2.6. Particle Size Distribution
3. Results and Discussion
3.1. Kinetics
3.2. Thermodynamics
3.3. Coagulation Assay with South Saskatchewan River Water and Aluminum Sulfate
3.4. Floc Characterization
3.4.1. Floc Images
3.4.2. Flocs Size
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Travkin, V.M.; Solyanikova, I.P. Salicylate or Phthalate: The Main Intermediates in the Bacterial Degradation of Naphthalene. Processes 2021, 9, 1862. [Google Scholar] [CrossRef]
- Setyawan, H.; Fauziyah, M.; Tomo, H.S.S.; Widiyastuti, W.; Nurtono, T. Fabrication of Hydrophobic Cellulose Aerogels from Renewable Biomass Coir Fibers for Oil Spillage Clean-Up. J. Polym. Environ. 2022, 30, 5228–5238. [Google Scholar] [CrossRef]
- Anwana Abel, U.; Rhoda Habor, G.; Innocent Oseribho, O. Adsorption Studies of Oil Spill Clean-up Using Coconut Coir Activated Carbon (CCAC). Am. J. Chem. Eng. 2020, 8, 36. [Google Scholar] [CrossRef]
- Kumar, J.A.; Krithiga, T.; Narendrakumar, G.; Prakash, P.; Balasankar, K.; Sathish, S.; Prabu, D.; Pushkala, D.P.; Marraiki, N.; Ramu, A.G.; et al. Effect of Ca2+ ions on naphthalene adsorption/desorption onto calcium oxide nanoparticle: Adsorption isotherm, kinetics and regeneration studies. Environ. Res. 2022, 204, 112070. [Google Scholar] [CrossRef] [PubMed]
- He, X.-Q.; Cui, Y.-Y.; Zhang, Y.; Yang, C.-X. Fabrication of magnetic polydopamine@naphthyl microporous organic network nanosphere for efficient extraction of hydroxylated polycyclic aromatic hydrocarbons and p-nitrophenol from wastewater samples. J. Chromatogr. A 2021, 1651, 462347. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, L.; Moghaddam, T.B.; Chen, M.; Wu, S.; Yuan, X. Adsorption mechanism of polycyclic aromatic hydrocarbons using wood waste-derived biochar. J. Hazard. Mater. 2022, 425, 128003. [Google Scholar] [CrossRef]
- Jaradat, A.Q.; Shtayat, A.R. A coagulation-flocculation process combined with continuous adsorption using eggshell waste materials for phenols and PAHs removal from landfill leachate. Environ. Eng. Res. 2021, 27, 210133. [Google Scholar] [CrossRef]
- Agbovi, H.K.; Wilson, L.D. Optimisation of orthophosphate and turbidity removal using an amphoteric chitosan-based flocculant–ferric chloride coagulant system. Environ. Chem. 2019, 16, 599. [Google Scholar] [CrossRef]
- Rosińska, A.; Dąbrowska, L. Influence of type and dose of coagulants on effectiveness of PAH removal in coagulation water treatment. Water Sci. Eng. 2021, 14, 193–200. [Google Scholar] [CrossRef]
- Agbovi, H.K.; Wilson, L.D. Flocculation Optimization of Orthophosphate with FeCl 3 and Alginate Using the Box–Behnken Response Surface Methodology. Ind. Eng. Chem. Res. 2017, 56, 3145–3155. [Google Scholar] [CrossRef]
- Gutierrez-Urbano, I.; Villen-Guzman, M.; Perez-Recuerda, R.; Rodriguez-Maroto, J.M. Removal of polycyclic aromatic hydrocarbons (PAHs) in conventional drinking water treatment processes. J. Contam. Hydrol. 2021, 243, 103888. [Google Scholar] [CrossRef]
- Zhang, K.; Pernitsky, D.; Jafari, M.; Lu, Q. Effect of MgO Slaking on Silica Removal during Warm Lime Softening of SAGD Produced Water. Ind. Eng. Chem. Res. 2021, 60, 1839–1849. [Google Scholar] [CrossRef]
- Zhang, L.; Mishra, D.; Zhang, K.; Perdicakis, B.; Pernitsky, D.; Lu, Q. Impact of influent deviations on polymer coagulant dose in warm lime softening of synthetic SAGD produced water. Water Res. 2021, 200, 117202. [Google Scholar] [CrossRef]
- Dąbska, A.; Léthel, A. Swelling behaviours of compacted lime-softening sludge for application in landfill liners. Sci. Rep. 2021, 11, 15220. [Google Scholar] [CrossRef]
- Venegas-García, D.J.; Wilson, L.D. Removal of Model Aromatic Hydrocarbons from Aqueous Media with a Ferric Sulfate–Lime Softening Coagulant System. Surfaces 2022, 5, 413–428. [Google Scholar] [CrossRef]
- Kong, D.; Kusrini, E.; Wilson, L.D. Binary pectin-chitosan composites for the uptake of lanthanum and yttrium species in aqueous media. Micromachines 2021, 12, 478. [Google Scholar] [CrossRef]
- Kristianto, H.; Manurung, N.; Wardhani, I.K.; Prasetyo, S.; Sugih, A.K.; Arbita, A.A. A kinetic, isotherm adsorption, and thermodynamic study of Congo red coagulation using Leucaena crude extract as natural coagulant. Water Pract. Technol. 2022, 17, 1332–1346. [Google Scholar] [CrossRef]
- Inam, M.A.; Khan, R.; Lee, K.H.; Akram, M.; Ahmed, Z.; Lee, K.G.; Wie, Y.M. Adsorption Capacities of Iron Hydroxide for Arsenate and Arsenite Removal from Water by Chemical Coagulation: Kinetics, Thermodynamics and Equilibrium Studies. Molecules 2021, 26, 7046. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.H.; Wilson, L.D. Kinetic uptake studies of powdered materials in solution. Nanomaterials 2015, 5, 969–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahaninia, M.H.; Wilson, L.D. A Kinetic Uptake Study of Roxarsone Using Cross-Linked Chitosan Beads. Ind. Eng. Chem. Res. 2017, 56, 1704–1712. [Google Scholar] [CrossRef]
- Ejimofor, M.I.; Ezemagu, I.G.; Ugonabo, V.I.; Nnaji, P.C.; Anadebe, V.C.; Diyoke, C.; Menkiti, M.C. Adsorption kinetics, mechanistic, isotherm and thermodynamics study of petroleum produced water coagulation using novel Egeria radiate shell extract (ERSE). J. Indian Chem. Soc. 2022, 99, 100357. [Google Scholar] [CrossRef]
- Edet, U.A.; Ifelebuegu, A.O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes 2020, 8, 665. [Google Scholar] [CrossRef]
- Steiger, B.G.K.; Wilson, L.D. Modular chitosan-based adsorbents for tunable uptake of sulfate from water. Int. J. Mol. Sci. 2020, 21, 7130. [Google Scholar] [CrossRef] [PubMed]
- Dayarathne, H.N.; Angove, M.J.; Aryal, R.; Abuel-Naga, H.; Mainali, B. Removal of natural organic matter from source water: Review on coagulants, dual coagulation, alternative coagulants, and mechanisms. J. Water Process Eng. 2021, 40, 101820. [Google Scholar] [CrossRef]
- Abramian, L.; El-Rassy, H. Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem. Eng. J. 2009, 150, 403–410. [Google Scholar] [CrossRef]
- chaudhary, S.; Sharma, J.; Kaith, B.S.; yadav, S.; Sharma, A.K.; Goel, A. Gum xanthan-psyllium-cl-poly(acrylic acid-co-itaconic acid) based adsorbent for effective removal of cationic and anionic dyes: Adsorption isotherms, kinetics and thermodynamic studies. Ecotoxicol. Environ. Saf. 2018, 149, 150–158. [Google Scholar] [CrossRef]
- Ohale, P.E.; Onu, C.E.; Ohale, N.J.; Oba, S.N. Adsorptive kinetics, isotherm and thermodynamic analysis of fishpond effluent coagulation using chitin derived coagulant from waste Brachyura shell. Chem. Eng. J. Adv. 2020, 4, 100036. [Google Scholar] [CrossRef]
- Steiger, B.G.K.; Udoetok, I.A.; Faye, O.; Wilson, L.D. Counterion Effects in Metal Hybrid Biopolymer Materials for Sulfate Adsorption: An Experimental and Computational Study. ACS Appl. Polym. Mater. 2021, 3, 4595–4606. [Google Scholar] [CrossRef]
- Castañeda, L.F.; Coreño, O.; Nava, J.L. Simultaneous elimination of hydrated silica, arsenic and phosphates from real groundwater by electrocoagulation using a cascade-shaped up-flow reactor. Electrochim. Acta 2020, 331, 135365. [Google Scholar] [CrossRef]
- Hassan, D.H.; Shohdy, J.N.; El-Setouhy, D.A.; El-Nabarawi, M.; Naguib, M.J. Compritol-Based Nanostrucutured Lipid Carriers (NLCs) for Augmentation of Zolmitriptan Bioavailability via the Transdermal Route: In Vitro Optimization, Ex Vivo Permeation, In Vivo Pharmacokinetic Study. Pharmaceutics 2022, 14, 1484. [Google Scholar] [CrossRef]
- Masdor, N.A.; Padrilah, S.N.; Rani, R.M.; Karim, M.S.A.; Bakar, M.Z.A.; Ismail, A.S. The Effect of Temperature and Incubation Period on the Size and Polydispersity Index of the Nano-Emulsion Containing Essential Oil from Cinnamomum zeylanicum. Mater. Sci. Forum 2022, 1055, 105–109. [Google Scholar] [CrossRef]
Model | Initial Concentration (mg L−1) | Ferric Sulfate (mg L−1) | Lime (mg L−1) |
---|---|---|---|
PNP | 2 | 74.5 | 101.6 |
Naphthalene | 16.3 | 42 | 21 |
Contaminant | Pseudo-First Order Model | Pseudo-Second Order Model | ||||
---|---|---|---|---|---|---|
k1 | qe | R2 | k2 | qe | R2 | |
(min−1) | (mg g−1) | (min−1) | (mg g−1) | |||
PNP | 0.3091 ± 0.002 | 8.609 ± 0.037 | 0.997 | 0.0459 ± 0.0044 | 9.4503 ± 0.1366 | 0.981 |
Naphthalene | 0.3086 ± 0.031 | 846.9 ± 18.4 | 0.943 | 4.754 ×10−4 ± 1.2401 ×10−4 | 932.5 ± 39.87 | 0.873 |
Temp (K) | (1/K) | Ce | qe | Ke | ln Ke | ΔG° | ΔH° | ΔS° |
---|---|---|---|---|---|---|---|---|
(mg g−1) | (L g−1) | (kJ mol−1) | (kJ mol−1) | (J mol−1 K−1) | ||||
PNP | ||||||||
295.15 | 0.0033 | 1.631 | 8.44 | 5.177 | 1.6442 | −3.08 | 32.72 | 121.4 |
288.15 | 0.0034 | 1.700 | 5.28 | 3.106 | 1.1333 | −2.23 | ||
278.15 | 0.0035 | 1.868 | 4.40 | 2.355 | 0.8569 | −1.02 | ||
Naphthalene | ||||||||
295.15 | 0.0033 | 0.279 | 836.8 | 3004.6 | 8.0078 | −19.39 | 10.80 | 102.5 |
288.15 | 0.0034 | 0.289 | 836.3 | 2891.7 | 7.9695 | −18.72 | ||
278.15 | 0.0035 | 0.360 | 832.9 | 2316.9 | 7.7479 | −17.70 |
Contaminant | Water | Coagulant | RE (%) |
---|---|---|---|
PNP | Lab | Ferric sulfate | 28.0 ± 0.1 |
River | Ferric sulfate | 20.3 ± 0.1 | |
Lab | Aluminum sulfate | 20.5 ± 0.3 | |
River | Aluminum sulfate | 16.8 ± 0.4 | |
Naphthalene | Lab | Ferric sulfate | 89.0 ± 0.2 |
River | Ferric sulfate | 80.2 ± 0.1 | |
Lab | Aluminum sulfate | 83.2 ± 0.3 | |
River | Aluminum sulfate | 75.1 ± 0.5 |
Sample | Size (nm) | PDI | ||
---|---|---|---|---|
Contaminant | Water | Coagulant | ||
PNP | Lab | Ferric sulfate | 1950.3 ± 424.8 | 0.7 ± 0.1 |
PNP | Lab | Aluminum sulfate | 2200.0 ± 717.3 | 0.8 ± 0.1 |
PNP | River | Ferric sulfate | 1795.0 ± 223.3 | 0.5 ± 0.1 |
PNP | River | Aluminum sulfate | 2404.3 ± 242.7 | 0.5 ± 0.1 |
Naphthalene | Lab | Ferric sulfate | 2059.3 ± 1323.3 | 1.0 ± 0.0 |
Naphthalene | Lab | Aluminum sulfate | 3156.7 ± 368.5 | 0.6 ± 0.1 |
Naphthalene | River | Ferric sulfate | 3274.3 ± 1202.6 | 1.0 ± 0.0 |
Naphthalene | River | Aluminum sulfate | 2519.7 ± 615.1 | 0.4 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venegas-García, D.J.; Wilson, L.D. Kinetics and Thermodynamics of Adsorption for Aromatic Hydrocarbon Model Systems via a Coagulation Process with a Ferric Sulfate–Lime Softening System. Materials 2023, 16, 655. https://doi.org/10.3390/ma16020655
Venegas-García DJ, Wilson LD. Kinetics and Thermodynamics of Adsorption for Aromatic Hydrocarbon Model Systems via a Coagulation Process with a Ferric Sulfate–Lime Softening System. Materials. 2023; 16(2):655. https://doi.org/10.3390/ma16020655
Chicago/Turabian StyleVenegas-García, Deysi J., and Lee D. Wilson. 2023. "Kinetics and Thermodynamics of Adsorption for Aromatic Hydrocarbon Model Systems via a Coagulation Process with a Ferric Sulfate–Lime Softening System" Materials 16, no. 2: 655. https://doi.org/10.3390/ma16020655
APA StyleVenegas-García, D. J., & Wilson, L. D. (2023). Kinetics and Thermodynamics of Adsorption for Aromatic Hydrocarbon Model Systems via a Coagulation Process with a Ferric Sulfate–Lime Softening System. Materials, 16(2), 655. https://doi.org/10.3390/ma16020655