Nanosizing Approach—A Case Study on the Thermal Decomposition of Hydrazine Borane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MCM-41
2.2. Synthesis of Silica Aerogel
2.3. Synthesis of Hydrazine Borane
2.4. Confinement of HB in MCM-41 and Silica Aerogel
2.5. Encapsulation of Hydrazine Borane with PMMA
2.6. Characterization
3. Results and Discussion
3.1. Optimization of HB Loading
3.1.1. DTA Analysis
3.1.2. FTIR and XRD Analyses of HB, MCM-41, Silica Aerogel, HB/MCM-41 and HB/Si-Ae at Various Loading
3.1.3. N2 Adsorption/Desorption Isotherm and Morphology Characterizations of MCM-41, Silica Aerogel, HB/MCM-41 (1:1) and HB/Si-Ae (0.25/1)
3.2. Thermal Decomposition of HB, HB/MCM-41 and HB/Si-Ae
3.2.1. Open System Decomposition (TPD-MS and TGA)
Decomposition Kinetics in HB:MCM-41 (1:1) and HB:Si-Ae (0.25:1)
3.2.2. Closed System Decomposition (Volumetric Release & FTIR)
3.3. Decomposition Pathway of HB, HB:MCM-41 (1:1) and HB:Si-Ae (0.25:1)
3.4. Nanosizing via Polymer Encapsulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hügle, T.; Kühnel, M.F.; Lentz, D. Hydrazine Borane: A Promising Hydrogen Storage Material. J. Am. Chem. Soc. 2009, 131, 7444–7446. [Google Scholar] [CrossRef] [PubMed]
- Sutton, A.D.; Burrell, A.K.; Dixon, D.A.; Garner, E.B.; Gordon, J.C.; Nakagawa, T.; Ott, K.C.; Robinson, J.P.; Vasiliu, M. Regeneration of Ammonia Borane Spent Fuel by Direct Reaction with Hydrazine and Liquid Ammonia. Science 2011, 331, 1426–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moury, R.; Moussa, G.; Demirci, U.B.; Hannauer, J.; Bernard, S.; Petit, E.; van der Lee, A.; Miele, P. Hydrazine Borane: Synthesis, Characterization, and Application Prospects in Chemical Hydrogen Storage. Phys. Chem. Chem. Phys. 2012, 14, 1768–1777. [Google Scholar] [CrossRef] [PubMed]
- Chua, Y.S.; Pei, Q.; Ju, X.; Zhou, W.; Udovic, T.J.; Wu, G.; Xiong, Z.; Chen, P.; Wu, H. Alkali Metal Hydride Modification on Hydrazine Borane for Improved Dehydrogenation. J. Phys. Chem. C 2014, 118, 11244–11251. [Google Scholar] [CrossRef]
- Moury, R.; Demirci, U.B.; Ichikawa, T.; Filinchuk, Y.; Chiriac, R.; van der Lee, A.; Miele, P. Sodium Hydrazinidoborane: A Chemical Hydrogen-Storage Material. ChemSusChem 2013, 6, 667–673. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, W.; Pinkerton, F.E.; Udovic, T.J.; Yildirim, T.; Rush, J.J. Metal Hydrazinoborane LiN2H3BH3 and LiN2H3BH3·2N2H4BH3: Crystal Structures and High-Extent Dehydrogenation. Energy Environ. Sci. 2012, 5, 7531. [Google Scholar] [CrossRef]
- Castilla-Martinez, C.A.; Moury, R.; Demirci, U.B. Amidoboranes and Hydrazinidoboranes: State of the Art, Potential for Hydrogen Storage, and Other Prospects. Int. J. Hydrogen Energy 2020, 45, 30731–30755. [Google Scholar] [CrossRef]
- Moury, R.; Petit, J.F.; Demirci, U.B.; Ichikawa, T.; Miele, P. Pure Hydrogen-Generating “Doped” Sodium Hydrazinidoborane. Int. J. Hydrogen Energy 2015, 40, 7475–7482. [Google Scholar] [CrossRef]
- Şencanlı, S.; Karahan, S.; Özkar, S. Poly(4-Styrenesulfonic Acid-Co-Maleic Acid) Stabilized Nickel(0) Nanoparticles: Highly Active and Cost Effective Catalyst in Hydrogen Generation from the Hydrolysis of Hydrazine Borane. Int. J. Hydrogen Energy 2013, 38, 14693–14703. [Google Scholar] [CrossRef]
- Hannauer, J.; Demirci, U.B.; Geantet, C.; Herrmann, J.-M.; Miele, P. Transition Metal-Catalyzed Dehydrogenation of Hydrazine Borane N2H4BH3 via the Hydrolysis of BH3 and the Decomposition of N2H4. Int. J. Hydrogen Energy 2012, 37, 10758–10767. [Google Scholar] [CrossRef]
- Çelik, D.; Karahan, S.; Zahmakıran, M.; Özkar, S. Hydrogen Generation from the Hydrolysis of Hydrazine-Borane Catalyzed by Rhodium(0) Nanoparticles Supported on Hydroxyapatite. Int. J. Hydrogen Energy 2012, 37, 5143–5151. [Google Scholar] [CrossRef]
- Karahan, S.; Zahmakıran, M.; Özkar, S. Catalytic Hydrolysis of Hydrazine Borane for Chemical Hydrogen Storage: Highly Efficient and Fast Hydrogen Generation System at Room Temperature. Int. J. Hydrogen Energy 2011, 36, 4958–4966. [Google Scholar] [CrossRef]
- Hannauer, J.; Akdim, O.; Demirci, U.B.; Geantet, C.; Herrmann, J.-M.; Miele, P.; Xu, Q. High-Extent Dehydrogenation of Hydrazine Borane N2H4BH3 by Hydrolysis of BH3 and Decomposition of N2H4. Energy Environ. Sci. 2011, 4, 3355–3358. [Google Scholar] [CrossRef]
- Castilla-Martinez, C.A.; Moury, R.; Ould-Amara, S.; Demirci, U.B. Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances. Energies 2021, 14, 7003. [Google Scholar] [CrossRef]
- Wagemans, R.W.P.; van Lenthe, J.H.; de Jongh, P.E.; van Dillen, A.J.; de Jong, K.P. Hydrogen Storage in Magnesium Clusters- Quantum Chemical Study. J. Am. Chem. Soc. 2005, 127, 16675–16680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutowska, A.; Li, L.; Shin, Y.; Wang, C.M.; Li, X.S.; Linehan, J.C.; Smith, R.S.; Kay, B.D.; Schmid, B.; Shaw, W.; et al. Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane. Angew. Chem. Int. Ed. 2005, 44, 3578–3582. [Google Scholar] [CrossRef]
- Lai, S.-W.; Lin, H.-L.; Yu, T.L.; Lee, L.-P.; Weng, B.-J. Hydrogen Release from Ammonia Borane Embedded in Mesoporous Silica Scaffolds: SBA-15 and MCM-41. Int. J. Hydrogen Energy 2012, 37, 14393–14404. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, J.; Zhang, X.; Cheng, F.; Liang, J.; Tao, Z.; Chen, J. A Soft Hydrogen Storage Material: Poly(Methyl Acrylate)-Confined Ammonia Borane with Controllable Dehydrogenation. Adv. Mater. 2010, 22, 394–397. [Google Scholar] [CrossRef]
- Poh, N.E.; Nur, H.; Muhid, M.N.M.; Hamdan, H. Sulphated AlMCM-41: Mesoporous Solid Brønsted Acid Catalyst for Dibenzoylation of Biphenyl. Catal. Today 2006, 114, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Rueda, M.; Sanz-Moral, L.M.; Segovia, J.J.; Martín, Á. Improvement of the Kinetics of Hydrogen Release from Ammonia Borane Confined in Silica Aerogel. Microporous Mesoporous Mater. 2017, 237, 189–200. [Google Scholar] [CrossRef]
- Sepehri, S.; Feaver, A.; Shaw, W.J.; Howard, C.J.; Zhang, Q.; Autrey, T.; Cao. Spectroscopic Studies of Dehydrogenation of Ammonia Borane in Carbon Cryogel. J. Phys. Chem. B 2007, 111, 14285–14289. [Google Scholar] [CrossRef] [PubMed]
- Al-Kukhun, A.; Hwang, H.T.; Varma, A. Mechanistic Studies of Ammonia Borane Dehydrogenation. Int. J. Hydrogen Energy 2013, 38, 169–179. [Google Scholar] [CrossRef]
- Lucien, H.W. Thermal Decomposition of Hydrazine. J. Chem. Eng. Data 1961, 6, 584–586. [Google Scholar] [CrossRef]
- Chua, Y.S.; Wu, G.; Xiong, Z.; He, T.; Chen, P. Calcium Amidoborane Ammoniate-Synthesis, Structure, and Hydrogen Storage Properties. Chem. Mater. 2009, 21, 4899–4904. [Google Scholar] [CrossRef]
- Vinh-Son, N.; Swinnen, S.; Matus, M.H.; Nguyen, M.T.; Dixon, D.A. The Effect of the NH2 Substituent on NH3: Hydrazine as an Alternative for Ammonia in Hydrogen Release in the Presence of Boranes and Alanes. Phys. Chem. Chem. Phys. 2009, 11, 6339–6344. [Google Scholar] [CrossRef]
- Alipour, J.; Shoushtari, A.M.; Kaflou, A. Ammonia Borane Confined by Poly(Methyl Methacrylate)/Multiwall Carbon Nanotube Nanofiber Composite, as a Polymeric Hydrogen Storage Material. J. Mater. Sci. 2015, 50, 3110–3117. [Google Scholar] [CrossRef]
- Jeon, K.-J.; Moon, H.R.; Ruminski, A.M.; Jiang, B.; Kisielowski, C.; Bardhan, R.; Urban, J.J. Air-Stable Magnesium Nanocomposites Provide Rapid and High-Capacity Hydrogen Storage without Using Heavy-Metal Catalysts. Nat. Mater. 2011, 10, 286–290. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Osman, N.A.; Nordin, N.I.; Tan, K.C.; Hosri, N.A.H.A.; Pei, Q.; Ng, E.P.; Othman, M.B.H.; Ismail, M.; He, T.; Chua, Y.S. Nanosizing Approach—A Case Study on the Thermal Decomposition of Hydrazine Borane. Materials 2023, 16, 867. https://doi.org/10.3390/ma16020867
Abu Osman NA, Nordin NI, Tan KC, Hosri NAHA, Pei Q, Ng EP, Othman MBH, Ismail M, He T, Chua YS. Nanosizing Approach—A Case Study on the Thermal Decomposition of Hydrazine Borane. Materials. 2023; 16(2):867. https://doi.org/10.3390/ma16020867
Chicago/Turabian StyleAbu Osman, Nur Ain, Nor Izzati Nordin, Khai Chen Tan, Nur Aida Hanisa An Hosri, Qijun Pei, Eng Poh Ng, Muhammad Bisyrul Hafi Othman, Mohammad Ismail, Teng He, and Yong Shen Chua. 2023. "Nanosizing Approach—A Case Study on the Thermal Decomposition of Hydrazine Borane" Materials 16, no. 2: 867. https://doi.org/10.3390/ma16020867
APA StyleAbu Osman, N. A., Nordin, N. I., Tan, K. C., Hosri, N. A. H. A., Pei, Q., Ng, E. P., Othman, M. B. H., Ismail, M., He, T., & Chua, Y. S. (2023). Nanosizing Approach—A Case Study on the Thermal Decomposition of Hydrazine Borane. Materials, 16(2), 867. https://doi.org/10.3390/ma16020867