Building Low-Cost, High-Performance Flexible Photodetector Based on Tetragonal Phase VO2 (A) Nanorod Networks
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Tetragonal Phase VO2 (A) Nanorods
2.2. Materials Characterization
2.3. Fabrication of Tetragonal Phase VO2 (A) Nanorod Networks Photodetector
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balandin, A.A.; Kargar, F.; Salguero, T.T.; Lake, R.K. One-dimensional van der Waals quantum materials. Mater. Today 2022, 55, 74–91. [Google Scholar] [CrossRef]
- Pham, T.; Qamar, A.; Dinh, T.; Masud, M.K.; Rais-Zadeh, M.; Senesky, D.G.; Yamauchi, Y.; Nguyen, N.T.; Phan, H.P. Nanoarchitectonics for wide bandgap semiconductor nanowires: Toward the next generation of nanoelectromechanical systems for environmental monitoring. Adv. Sci. 2020, 7, 2001294. [Google Scholar] [CrossRef] [PubMed]
- Ahoulou, S.; Perret, E.; Nedelec, J.-M. Functionalization and characterization of silicon nanowires for sensing applications: A review. Nanomaterials 2021, 11, 999. [Google Scholar] [CrossRef] [PubMed]
- Fast, J.; Aeberhard, U.; Bremner, S.P.; Linke, H. Hot-carrier optoelectronic devices based on semiconductor nanowires. Appl. Phys. Rev. 2021, 8, 021309. [Google Scholar] [CrossRef]
- Kumaresan, Y.; Min, G.B.; Dahiya, A.S.; Ejaz, A.; Shakthivel, D.; Dahiya, R. Kirigami and Mogul-patterned ultra-stretchable high-performance ZnO nanowires-based photodetector. Adv. Mater. Technol. 2022, 7, 2100804. [Google Scholar] [CrossRef]
- Yan, C.; Singh, N.; Lee, P.S. Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time. Appl. Phys. Lett. 2010, 96, 053108. [Google Scholar] [CrossRef]
- Fu, W.B.; Shang, G.L.; Gong, X.X.; Zhang, L.D.; Fei, G.T. Preparation of large scale and highly ordered vanadium pentoxide nanowire arrays towards high performance photodetectors. J. Mater. Chem. C 2017, 5, 1474–1478. [Google Scholar] [CrossRef]
- Hou, J.; Wang, X.; Fu, D.; Ko, C.; Chen, Y.; Sun, Y.; Lee, S.; Wang, K.X.; Dong, K.; Sun, Y.; et al. Modulating photoluminescence of monolayer molybdenum disulfide by metal-insulator phase transition in active substrates. Small 2016, 12, 3976–3984. [Google Scholar] [CrossRef]
- Manca, N.; Kanki, T.; Endo, F.; Marré, D.; Pellegrino, L. Planar nanoactuators based on VO2 phase transition. Nano Lett. 2020, 20, 7251–7256. [Google Scholar] [CrossRef]
- Huber, M.A.; Plankl, M.; Eisele, M.; Marvel, R.E.; Sandner, F.; Korn, T.; Schüller, C.; Haglund, R.F., Jr.; Huber, R.; Cocker, T.L. Ultrafast mid-infrared nanoscopy of strained vanadium dioxide nanobeams. Nano Lett. 2016, 16, 1421–1427. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, J.; Wang, Z.; Zhang, Z.; Ding, Z. Structural transition of VO2 (A) nanorods studied by vibrational spectroscopies. RSC Adv. 2014, 4, 18055–18060. [Google Scholar] [CrossRef]
- Majid, S.S.; Ahad, A.; Rahman, F.; Sathe, V.; Shukla, D. Unveiling the role of VO2 (B) polymorph in the insulator-metal transition of VO2 (M1) thin films. Phys. Status Solidi B 2022, 259, 2200108. [Google Scholar] [CrossRef]
- Lee, S.; Sun, X.-G.; Lubimtsev, A.A.; Gao, X.; Ganesh, P.; Ward, T.Z.; Eres, G.; Chisholm, M.F.; Dai, S.; Lee, H.N. Persistent electrochemical performance in epitaxial VO2(B). Nano Lett. 2017, 17, 2229–2233. [Google Scholar] [CrossRef]
- Schofield, P.; Bradicich, A.; Gurrola, R.M.; Zhang, Y.W.; Brown, T.D.; Pharr, M.; Shamberger, P.J.; Banerjee, S. Harnessing the metal-insulator transition of VO2 in neuromorphic computing. Adv. Mater. 2023, 35, 2205294. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Lee, S.; Yang, S.; Delaire, O.; Wu, J. Recent progresses on physics and applications of vanadium dioxide. Mater. Today 2018, 21, 875–896. [Google Scholar] [CrossRef]
- Choi, S.; Ahn, G.; Moon, S.J.; Lee, S. Tunable resistivity of correlated VO2(A) and VO2(B) via tungsten doping. Sci. Rep. 2020, 10, 9721. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Huang, Y.F.; Zhang, J.C.; Wu, W.B.; Niu, F.; Zhang, Y.L.; Liu, X.H.; Liu, X.; Huang, C. Facile synthesis, phase transition, optical switching and oxidation resistance properties of belt-like VO2 (A) and VO2 (M) with a rectangular cross section. Mater. Res. Bull. 2012, 47, 1978–1986. [Google Scholar] [CrossRef]
- Liang, J.; Wang, K.; Xuan, C.; Chen, Q.; Tai, W.; Ge, P.; Zhang, H. Room temperature H2S gas sensing performance of VO2(A) nanowires with high aspect ratio. Sens. Actuators A Phys. 2022, 347, 113986. [Google Scholar] [CrossRef]
- Samanta, S.; Li, Q.J.; Cheng, B.Y.; Huang, Y.W.; Pei, C.Y.; Wang, Q.L.; Ma, Y.Z.; Wang, L. Phase coexistence and pressure-temperature phase evolution of VO2 (A) nanorods near the semiconductor-semiconductor transition. Phys. Rev. B 2017, 95, 045135. [Google Scholar] [CrossRef]
- Popuri, S.R.; Artemenko, A.; Labrugere, C.; Miclau, M.; Villesuzanne, A.; Pollet, M. VO2 (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms. J. Solid State Chem. 2014, 213, 79–86. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Z.; Hu, Y.; Xiang, Y.; Zhang, L.; Wang, Y.; Wang, G.-C.; Shi, J. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 2021, 16, 894–901. [Google Scholar] [CrossRef]
- Zhang, S.; Shang, B.; Yang, J.; Yan, W.; Wei, S.; Xie, Y. From VO2 (B) to VO2 (A) nanobelts: First hydrothermal transformation, spectroscopic study and first principles calculation. Phys. Chem. Chem. Phys. 2011, 13, 15873–15881. [Google Scholar] [CrossRef] [PubMed]
- Rogalski, A.; Bielecki, Z.; Mikołajczyk, J.; Wojtas, J. Ultraviolet photodetectors: From photocathodes to low-dimensional solids. Sensors 2023, 23, 4452. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.H.; Fu, W.B.; Fei, G.T.; Xu, S.H.; Gao, X.D.; Zhang, L.D. Preparation and enhanced infrared response properties of ordered W-doped VO2 nanowire array. Appl. Surf. Sci. 2018, 436, 1061–1066. [Google Scholar] [CrossRef]
- Yin, H.; Ni, J.; Jiang, W.; Zhang, Z.; Yu, K. Synthesis, field emission and humidity sensing characteristics of monoclinic VO2 nanostructures. Phys. E Low-dimens. Syst. Nanostructures 2011, 43, 1720–1725. [Google Scholar] [CrossRef]
- Yoon, J.; Hong, W.-K.; Kim, Y.; Park, S.-Y. Nanostructured vanadium dioxide materials for optical sensing applications. Sensors 2023, 23, 6715. [Google Scholar] [CrossRef]
- Li, L.; Lee, P.S.; Yan, C.; Zhai, T.; Fang, X.; Liao, M.; Koide, Y.; Bando, Y.; Golberg, D. Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts. Adv. Mater. 2010, 22, 5145–5149. [Google Scholar] [CrossRef]
- Aga, R.S.; Jowhar, D.; Ueda, A.; Pan, Z.; Collins, W.E.; Mu, R.; Singer, K.D.; Shen, J. Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot. Appl. Phys. Lett. 2007, 91, 232108. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Xu, Y.; Gong, H.; Yang, Y.; Ren, F.-F.; Liu, B.; Gu, S.; Zhang, R.; Ye, J. Anion engineering enhanced response speed and tunable spectral responsivity in gallium-oxynitrides-based ultraviolet photodetectors. ACS Appl. Electron. Mater. 2020, 2, 808–816. [Google Scholar] [CrossRef]
- Yan, C.; Wang, J.; Wang, X.; Kang, W.; Cui, M.; Foo, C.Y.; Lee, P.S. An intrinsically stretchable nanowire photodetector with a fully embedded structure. Adv. Mater. 2014, 26, 943–950. [Google Scholar] [CrossRef]
- Afal, A.; Coskun, S.; Unalan, H.E. All solution processed, nanowire enhanced ultraviolet photodetectors. Appl. Phys. Lett. 2013, 102, 043503. [Google Scholar] [CrossRef]
- Wu, J.M.; Chang, W.E. Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Appl. Mater. Interfaces 2014, 6, 14286–14292. [Google Scholar] [CrossRef] [PubMed]
- Rajeswaran, B.; Tadeo, I.J.; Umarji, A.M. IR photoresponsive VO2 thin films and electrically assisted transition prepared by single-step chemical vapor deposition. J. Mater. Chem. C 2020, 8, 12543–12550. [Google Scholar] [CrossRef]
- Sun, M.; Xu, Z.; Yin, M.; Lin, Q.; Lu, L.; Xue, X.; Zhu, X.; Cui, Y.; Fan, Z.; Ding, Y.; et al. Broad-band three dimensional nanocave ZnO thin film photodetectors enhanced by Au surface plasmon resonance. Nanoscale 2016, 8, 8924–8930. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alghafour, N.M.; Ahmed, N.M.; Hassan, Z. Fabrication and characterization of V2O5 nanorods based metal–semiconductor–metal photodetector. Sens. Actuators A Phys. 2016, 250, 250–257. [Google Scholar] [CrossRef]
- Gan, L.; Liao, M.; Li, H.; Ma, Y.; Zhai, T. Geometry-induced high performance ultraviolet photodetectors in kinked SnO2 nanowires. J. Mater. Chem. C 2015, 3, 8300–8306. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.X.; Fang, X.S.; Zhai, T.Y.; Liao, M.Y.; Wang, H.Q.; Li, G.H.; Koide, Y.; Bando, Y.; Golberg, D. Sb2O3 nanobelt networks for excellent visible-light-range photodetectors. Nanotechnology 2011, 22, 165704. [Google Scholar] [CrossRef]
- Nasiri, N.; Jin, D.; Tricoli, A. Nanoarchitechtonics of visible-blind ultraviolet photodetector materials: Critical features and nano-microfabrication. Adv. Opt. Mater. 2019, 7, 1800580. [Google Scholar] [CrossRef]
- Alenezi, M.R.; Alshammari, A.S.; Alzanki, T.H.; Jarowski, P.; Henley, S.J.; Silva, S.R.P. ZnO nanodisk based UV detectors with printed electrodes. Langmuir 2014, 30, 3913–3921. [Google Scholar] [CrossRef]
- Praveen, S.; Veeralingam, S.; Badhulika, S. A flexible self-powered UV photodetector and optical UV filter based on β-Bi2O3/SnO2 quantum dots Schottky heterojunction. Adv. Mater. Interfaces 2021, 8, 2100373. [Google Scholar] [CrossRef]
- Ouyang, W.; Chen, J.; Shi, Z.; Fang, X. Self-powered UV photodetectors based on ZnO nanomaterials. Appl. Phys. Rev. 2021, 8, 031315. [Google Scholar] [CrossRef]
- Mathews, N.; Varghese, B.; Sun, C.; Thavasi, V.; Andreasson, B.P.; Sow, C.H.; Ramakrishna, S.; Mhaisalkar, S.G. Oxide nanowire networks and their electronic and optoelectronic characteristics. Nanoscale 2010, 2, 1984–1998. [Google Scholar] [CrossRef] [PubMed]
- Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef]
Photodetector | Laser | Ref. | ||
---|---|---|---|---|
VO2 (M1) thin film | 1550 nm | 2.23 s | 3.67 s | [33] |
ZnO nanowires | 365 nm | 32 s | 3.2 s | [30] |
ZnO thin film | 365 nm | 24 s | 15s | [34] |
V2O5 nanorods | 535 nm | 0.79 s | 0.54 s | [35] |
SnO2 nanowires | 250 nm | 0.03 s | 0.03 s | [36] |
Sb2O3 networks | 400 nm | 0.3 s | 0.3 s | [37] |
Zn2GeO4 networks | 254 nm | 0.3 s | 0.2 s | [6] |
VO2 (A) NR networks | 532 nm | 0.96 s | 0.52 s | this work |
VO2 (A) NR networks | 980 nm | 0.08 s | 0.70 s | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Tang, C.; Wang, F.; Zhu, Y.; Wang, Z.; Li, Y.; Wu, Q.; Lei, S.; Zhang, Y.; Hou, J. Building Low-Cost, High-Performance Flexible Photodetector Based on Tetragonal Phase VO2 (A) Nanorod Networks. Materials 2023, 16, 6688. https://doi.org/10.3390/ma16206688
Lin W, Tang C, Wang F, Zhu Y, Wang Z, Li Y, Wu Q, Lei S, Zhang Y, Hou J. Building Low-Cost, High-Performance Flexible Photodetector Based on Tetragonal Phase VO2 (A) Nanorod Networks. Materials. 2023; 16(20):6688. https://doi.org/10.3390/ma16206688
Chicago/Turabian StyleLin, Wenhui, Chaoyang Tang, Feiyu Wang, Yiyu Zhu, Zhen Wang, Yifan Li, Qiuqi Wu, Shuguo Lei, Yi Zhang, and Jiwei Hou. 2023. "Building Low-Cost, High-Performance Flexible Photodetector Based on Tetragonal Phase VO2 (A) Nanorod Networks" Materials 16, no. 20: 6688. https://doi.org/10.3390/ma16206688
APA StyleLin, W., Tang, C., Wang, F., Zhu, Y., Wang, Z., Li, Y., Wu, Q., Lei, S., Zhang, Y., & Hou, J. (2023). Building Low-Cost, High-Performance Flexible Photodetector Based on Tetragonal Phase VO2 (A) Nanorod Networks. Materials, 16(20), 6688. https://doi.org/10.3390/ma16206688