Design and Structural Factors’ Influence on the Fatigue Life of Steel Products with Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Computer Simulation
3.1.1. Computer Simulation of Simple Cylinder
3.1.2. Computer Simulation of the Implant
3.2. Structural Study
4. Discussion
5. Conclusions
- The simulation of the deformation process showed that the geometry of the implant had the necessary margin of safety for the osseointegration time.
- It was found that the stress concentration factor, which is associated with fatigue life, for an implant with a hexagon head and internal thread depends on the mechanical properties of the metal, design, and load conditions. The presence of internal threads and holes in the implant increases the theoretical stress concentration factor by more than 10 times.
- The calculated coefficient of the influence of surface roughness is within acceptable limits. Implant surface and technological pores with sharp edges, which may negatively affect fatigue life, were observed in the AM 316L steel implant.
- In order to increase the fatigue life of the implant, a more careful selection of manufacturing modes and the use of electro-polishing as a post-processing process may be recommended.
- The number of cycles for the failure of the implant, N 42858, which was calculated taking into account a coefficient for reducing the endurance limit, is enough for implant osseointegration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanawa, T. Metals and Medicine. Mater. Trans. 2021, 62, 139–148. [Google Scholar] [CrossRef]
- Plecko, M.; Sievert, C.; Andermatt, D.; Frigg, R.; Kronen, P.; Klein, K.; Stübinger, S.; Nuss, K.; Bürki, A.; Ferguson, S.; et al. Osseointegration and biocompatibility of different metal implants—A comparative experimental investigation in sheep. BMC Musculoskelet. Disord. 2012, 13, 32. Available online: http://www.biomedcentral.com/1471-2474/13/32 (accessed on 1 October 2023). [CrossRef] [PubMed]
- Morsiya, C. A review on parameters affecting properties ofvbiomaterial SS 316L. Aust. J. Mech. Eng. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Singh, D.; Singh, R.; Boparai, K.S.; Farina, I.; Feo, L.; Verma, A.K. In-vitro studies of SS 316 L biomedical implants prepared by FDM, vapor smoothing and investment casting. Compos. Part B Eng. 2018, 132, 107–114. [Google Scholar] [CrossRef]
- Hermawan, H.; Ramdan, D.; Djuansjah, J.R.P. Metals for Biomedical Applications, Part 17. In Biomedical Engineering—From Theory to Applications; Fazel, R., Ed.; InTech Publisher: Rijeka, Croatia, 2011; pp. 411–430. ISBN 978-953-307-637-9. [Google Scholar]
- Palmquist, A.; Jolic, M.; Hryha, E.; Shah, F.A. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Acta Biomater. 2023, 156, 125–145. [Google Scholar] [CrossRef]
- Rafi, H.K.; Karthik, N.V.; Gong, H.; Starr, T.L.; Stucker, B.E. Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. J. Mater. Eng. Perform. 2013, 22, 3872–3883. [Google Scholar] [CrossRef]
- Balachandramurthi, A.R.; Moverare, J.; Dixit, N.; Pederson, R. Influence of defects and as-built surface roughness on fatigue properties of additively manufactured Alloy 718. Mat. Sci. Eng. A 2018, 735, 463–474. [Google Scholar] [CrossRef]
- Kahlin, M.; Ansell, H.; Moverare, J. Fatigue behavior of notched additive manufactured Ti6Al4V with as-built surfaces. Int. J. Fatigue 2017, 101, 51–60. [Google Scholar] [CrossRef]
- Emanov, A.A.; Kuznetsov, V.P.; Gorbach, E.N.; Stogov, M.V.; Kireeva, E.A.; Ovchinnikov, E.N. Osseointegration of Titanium and Steel Additive Manufactured Implant in Rabbit Tibia under External Fixation: Comparative Study. Traumatol. Orthop. Russ. 2020, 26, 98–108. [Google Scholar] [CrossRef]
- Liu, Y.; Rath, B.; Tingart, M.; Eschweiler, J. Role of implants surface modification on osseointegration: A systematic review. J. Biomed. Mater. Res. 2020, 108, 470–484. [Google Scholar] [CrossRef]
- Zerbst, U.; Bruno, G.; Buffiere, J.-Y.; Wegener, T.; Niendorf, T.; Wu, T.; Zhang, X.; Kashaev, N.; Meneghetti, G.; Hrabe, N.; et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges. Prog. Mater. Sci. 2021, 121, 1–73. [Google Scholar] [CrossRef] [PubMed]
- Mower, T.M.; Long, M.J. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A 2016, 651, 198–213. [Google Scholar] [CrossRef]
- Karakaş, Ö.; Kardeş, F.B.; Foti, P.; Berto, F. An overview of factors affecting high-cycle fatigue of additive manufacturing metals. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 1649–1668. [Google Scholar] [CrossRef]
- Shresthaa, R.; Simsiriwonga, J.; Shamsaei, N. Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness. Addit. Manuf. 2019, 28, 23–38. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, C.N.; Zhang, X.; Goh, P.C.; Wei, J.; Hardacre, D.; Li, H. Fatigue and fracture behavior of laser powder bed fusion stainless steel 316L: Influence of processing parameters. Mater. Sci. Eng. A. 2017, 703, 251–261. [Google Scholar] [CrossRef]
- Avanzini, A. Fatigue Behavior of Additively Manufactured Stainless Steel 316L. Materials 2023, 16, 65. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamun, N.S.; Deenb, K.M.; Haidera, W.; Asselin, E.; Shabib, I. Corrosion behavior and biocompatibility of additively manufactured 316L stainless steel in a physiological environment: The effect of citrate ions. Addit. Manuf. 2020, 34, 1–15. [Google Scholar] [CrossRef]
- Dagkolu, A.; Gokdag, I.; Yilmaz, O. Design and additive manufacturing of a fatigue-critical airspace part using topology optimization and L-PBF process. Procedia Manuf. 2021, 54, 238–243. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, H.; Wang, C.; Zhou, L.; Yuan, S.; Zhang, W. A review of topology optimization for additive manufacturing: Status and challenges. Chin. J. Aeronaut. 2021, 34, 91–110. [Google Scholar] [CrossRef]
- Wohler, A. Report on test of the Konigl Niederschleesich-Markkischen Eisenbahn made with apparatus for the measurement of the bending and torsion of railway axles in service. Zeitsch. Bauwes. 1958, 8, 642–651. [Google Scholar]
- GOST RF 25.504-82; System Calculation and Testing. Methods of Fatigue Strength Behaviour Calculation. GostPerevod: Moscow, Russia, 2004.
- Kazantseva, N.; Koemets, Y.; Davidov, D.; Vinogradova, N.; Ezhov, I. Analysis of unstable plastic flow in the porous 316L samples manufactured with a laser 3D printer. Materials 2023, 16, 14. [Google Scholar] [CrossRef]
- Shanyavsky, A.A.; Soldatenkov, A.P. New paradigms in the description of metal fatigue. Bull. Perm Natl. Res. Polytech. University. Mech. 2019, 1, 198–209. [Google Scholar] [CrossRef]
- Kuznetsov, V.P.; Gubin, A.V.; Koryukov, A.A.; Gorgots, V.G. Long Bone Stump Implant. RU. Patent 152558, 10 June 2015. [Google Scholar]
- Khairul, M.; Zainudin, E.S.; Sapuan, S.; Zahari, N.; Ali, A. Fatigue Life for Type 316L Stainless Steel under Cyclic Loading. Adv. Mater. Res. 2013, 701, 771–781. [Google Scholar]
- Peterson, R. Stress Concentration Design Factors; Wiley: Hoboken, NJ, USA, 1974; 155p, ISBN 9780471683292. [Google Scholar]
- Basquin, O.H. The exponential law of endurance test. Am. Soc. Test. Mater. Proc. 1910, 10, 625–630. [Google Scholar]
- Grolier, P. A Method to Determine the Safety Coefficient in Fatigue of Compressor Valves. Proc. Int. Compress. Eng. Conf. 2000, 1418, 429–436. Available online: https://docs.lib.purdue.edu/icec/1418 (accessed on 1 October 2023).
- Wang, Z.; Yang, S.; Huang, Y.; Fan, C.; Peng, Z.; Gao, Z. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM). Materials 2021, 14, 7544. [Google Scholar] [CrossRef]
- Zhong, Y.; Rännar, L.E.; Liu, L.; Koptyug, A.; Wikman, S.; Olsen, J.; Cui, D.; Shen, Z. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J. Nucl. Mater. 2017, 486, 234–245. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, C.N.; Zhang, X.; Chin Goh, P.; Wei, J.; Li, H.; Hardacre, D. Competing influence of porosity and microstructure on the fatigue property of laser powder bed fusion stainless steel 316L. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 7–9 August 2017; pp. 365–376. [Google Scholar]
- Solberg, K.; Guan, S.; Razavi, S.M.J.; Welo, T.; Chan, K.C.; Berto, F. Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2043–2052. [Google Scholar] [CrossRef]
- Shih, C.C.; Shih, C.M.; Su, Y.Y.; Chang, M.S.; Lin, S.J. Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros. Sci. 2004, 46, 427–441. [Google Scholar] [CrossRef]
- Shih, C.C.; Shih, C.M.; Su, Y.Y.; Chang, M.S.; Lin, S.J. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes. Appl. Surf. Sci. 2003, 219, 347–362. [Google Scholar] [CrossRef]
Alloy/Element | Fe | Cr | Ni | Mn | Si | Mo |
---|---|---|---|---|---|---|
Steel 316L | base | 17.28 | 11.11 | 1.22 | 0.78 | 2.85 |
Yong Modulus, E, GPa | Poisson’s Ratio, μ | Tensile Yield Strength, σ0.2, MPa | Ultimate Strength, σb, MPa |
---|---|---|---|
165 | 0.3 | 332 | 673 |
Region/Element | Fe | Si | Cr | Mn | Ni | Mo |
---|---|---|---|---|---|---|
A | 66.7 | 0.8 | 17.3 | 1.2 | 11.2 | 2.8 |
B | 66.6 | 0.9 | 17.3 | 1.3 | 11.1 | 2.8 |
C | 66.9 | 0.7 | 17.3 | 1.2 | 11.0 | 2.9 |
Region A | Region B | |
---|---|---|
Ra | 33 | 15 |
Rz | 84 | 60 |
Rq | 36.5 | 12.5 |
Rt | 80 | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazantseva, N.; Il’inikh, M.; Kuznetsov, V.; Koemets, Y.; Bakhrunov, K.; Karabanalov, M. Design and Structural Factors’ Influence on the Fatigue Life of Steel Products with Additive Manufacturing. Materials 2023, 16, 7315. https://doi.org/10.3390/ma16237315
Kazantseva N, Il’inikh M, Kuznetsov V, Koemets Y, Bakhrunov K, Karabanalov M. Design and Structural Factors’ Influence on the Fatigue Life of Steel Products with Additive Manufacturing. Materials. 2023; 16(23):7315. https://doi.org/10.3390/ma16237315
Chicago/Turabian StyleKazantseva, Nataliya, Maxim Il’inikh, Victor Kuznetsov, Yulia Koemets, Konstantin Bakhrunov, and Maxim Karabanalov. 2023. "Design and Structural Factors’ Influence on the Fatigue Life of Steel Products with Additive Manufacturing" Materials 16, no. 23: 7315. https://doi.org/10.3390/ma16237315
APA StyleKazantseva, N., Il’inikh, M., Kuznetsov, V., Koemets, Y., Bakhrunov, K., & Karabanalov, M. (2023). Design and Structural Factors’ Influence on the Fatigue Life of Steel Products with Additive Manufacturing. Materials, 16(23), 7315. https://doi.org/10.3390/ma16237315