Hydroxyapatite Double Substituted with Zinc and Silicate Ions: Possibility of Mechanochemical Synthesis and In Vitro Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Substituted HA
2.2. Analysis of Synthesized Compounds
2.3. In Vitro Investigations
3. Results and Discussion
3.1. Determination of the Optimal Conditions of the Mechanochemical Synthesis
3.2. Mechanochemical Synthesis of ZnSi-HA Samples
3.3. In Vitro Investigations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dorozhkin, S.V. Calcium orthophosphates in nature, biology and medicine. Materials 2009, 2, 399–498. [Google Scholar] [CrossRef]
- Yoo, J.J.; Kim, H.J.; Seo, S.M.; Oh, K.S. Preparation of a hemiporous hydroxyapatite scaffold and evaluation as a cell-mediated bone substitute. Ceram. Int. 2014, 40, 3079–3087. [Google Scholar] [CrossRef]
- Kuroda, K.; Okido, M. Hydroxyapatite coating of titanium implants using hydroprocessing and evaluation of their osteoconductivity. Bioinorg. Chem. Appl. 2012, 2012, 730693. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Vimala, N.; Mandke, L. An insight into dentin desensitizing agents—In vivo study. Indian J. Dent. Res. 2013, 24, 571–574. [Google Scholar] [CrossRef]
- Rimondini, L.; Palazzo, B.; Iafisco, M.; Canegallo, L.; Demarosi, F.; Merlo, M.; Roveri, N. The remineralizing effect of carbonate-hydroxyapatite nanocrystals on dentine. In Materials Science Forum; Trans Tech Publications Ltd.: Zurich, Switzerland, 2007; Volume 539–543, pp. 602–605. [Google Scholar] [CrossRef]
- Rohanizadeh, R.; Chung, K. Hydroxyapatite as a carrier for bone morphogenetic protein. J. Oral Implantol. 2011, 37, 659–672. [Google Scholar] [CrossRef]
- Lee, J.H.; Ko, I.H.; Jeon, S.H.; Chae, J.H.; Lee, E.J.; Chang, J.H. Localized drugs delivery hydroxyapatite microspheres for osteoporosis therapy. Biosensing Nanomed. IV 2011, 8099, 46–52. [Google Scholar] [CrossRef]
- Šupová, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015, 41, 9203–9231. [Google Scholar] [CrossRef]
- Fahami, A.; Nasiri-Tabrizi, B.; Ebrahimi-Kahrizsangi, R. Mechanosynthesis and characterization of chlorapatite nanopowders. Mater. Lett. 2013, 110, 117–121. [Google Scholar] [CrossRef]
- Bulina, N.V.; Makarova, S.V.; Prosanov, I.Y.; Vinokurova, O.B.; Lyakhov, N.Z. Structure and thermal stability of fluorhydroxyapatite and fluorapatite obtained by mechanochemical method. J. Solid State Chem. 2020, 282, 121076. [Google Scholar] [CrossRef]
- Bulina, N.V.; Chaikina, M.V.; Andreev, A.S.; Lapina, O.B.; Ishchenko, A.V.; Prosanov, I.Y.; Gerasimov, K.B.; Solovyov, L.A. Mechanochemical Synthesis of SiO44−-Substituted Hydroxyapatite, Part II—Reaction Mechanism, Structure, and Substitution Limit. Eur. J. Inorg. Chem. 2014, 2014, 4810–4825. [Google Scholar] [CrossRef]
- Bulina, N.V.; Chaikina, M.V.; Prosanov, I.Y.; Dudina, D.V.; Solovyov, L.A. Fast synthesis of La-substituted apatite by the dry mechanochemical method and analysis of its structure. J. Solid State Chem. 2017, 252, 93–99. [Google Scholar] [CrossRef]
- Makarova, S.V.; Bulina, N.V.; Prosanov, I.Y.; Ishchenko, A.V.; Chaikina, M.V. Mechanochemical Synthesis of Apatite with the Simultaneous Substitutions of Calcium by Lanthanum and Phosphate by Silicate. Russ. J. Inorg. Chem. 2020, 65, 1831–1837. [Google Scholar] [CrossRef]
- Patel, N.; Best, S.M.; Bonfield, W.; Gibson, I.R.; Hing, K.A.; Damien, E.; Revell, P.A. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J. Mater. Sci. Mater. Med. 2002, 13, 1199–1206. [Google Scholar] [CrossRef]
- Anwar, A.; Akbar, S.; Sadiqa, A.; Kazmi, M. Novel continuous flow synthesis, characterization and antibacterial studies of nanoscale zinc substituted hydroxyapatite bioceramics. Inorg. Chim. Acta 2016, 453, 16–22. [Google Scholar] [CrossRef]
- Popa, C.L.; Deniaud, A.; Michaud-Soret, I.; Guégan, R.; Motelica-Heino, M.; Predoi, D. Structural and biological assessment of zinc doped hydroxyapatite nanoparticles. J. Nanomater. 2016, 2016, 1062878. [Google Scholar] [CrossRef]
- Balamurugan, A.; Rebelo, A.H.S.; Lemos, A.F.; Rocha, J.H.G.; Ventura, J.M.G.; Ferreira, J.M.F. Suitability evaluation of sol–gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent. Mater. 2008, 24, 1374–1380. [Google Scholar] [CrossRef]
- Chaikina, M.V.; Pichugin, V.F.; Surmeneva, M.A.; Surmenev, R.A. Mechanochemical Synthesis of Hydroxyapatite with Substitutions for Depositing the Coatings on Medical Implants by Means of High-Frequency Magnetron Sputtering. Chem. Sustain. Dev. 2009, 17, 507–513. Available online: https://www.sibran.ru/upload/iblock/e98/mechanochemical_synthesis_of_hydroxyapatite_with_substitutions_for_depositing_coatings_on_medical_im.pdf (accessed on 4 February 2023).
- Friederichs, R.J.; Chappell, H.F.; Shepherd, D.V.; Best, S.M. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite. J. R. Soc. Interface 2015, 12, 20150190. [Google Scholar] [CrossRef]
- Eremina, J.A.; Lider, E.V.; Kuratieva, N.V.; Samsonenko, D.G.; Klyushova, L.S.; Trifonov, R.E.; Ostrovskii, V.A. Synthesis and crystal structures of cytotoxic mixed-ligand copper (II) complexes with alkyl tetrazole and polypyridine derivatives. Inorg. Chim. Acta 2021, 516, 120169. [Google Scholar] [CrossRef]
- Tonsuaadu, K.; Gross, K.A.; Plūduma, L.; Veiderma, M. A review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 2012, 110, 647–659. [Google Scholar] [CrossRef]
- Chaikina, M.V.; Bulina, N.V.; Vinokurova, O.B.; Gerasimov, K.B.; Prosanov, I.Y.; Kompankov, N.B.; Lapina, O.B.; Papulovskiy, E.S.; Ishchenko, A.V.; Makarova, S.V. Possibilities of Mechanochemical Synthesis of Apatites with Different Ca/P Ratios. Ceramics 2022, 5, 31. [Google Scholar] [CrossRef]
- Elliott, J.C. Structure and Chemistry of Apatite and Other Calcium Orthophosphates; Studies in Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 1994; pp. 1–404. ISBN 0-444-81582-1. [Google Scholar]
- Wilson, R.M.; Elliott, J.C.; Dowker, S.E.P.; Smith, R.I. Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 2004, 25, 2205–2213. [Google Scholar] [CrossRef]
- Lurie, J. Handbook of Analytical Chemistry, 4th ed.; Rugram: Moscow, Russia, 2012; pp. 1–440. ISBN 978-5-458-33453-2. [Google Scholar]
- Tite, T.; Popa, A.C.; Balescu, L.M.; Bogdan, I.M.; Pasuk, I.; Ferreira, J.M.; Stan, G.E. Cationic substitutions in hydroxyapatite: Current status of the derived biofunctional effects and their in vitro interrogation methods. Materials 2018, 11, 2081. [Google Scholar] [CrossRef] [PubMed]
- Predoi, D.; Iconaru, S.L.; Deniaud, A.; Chevallet, M.; Michaud-Soret, I.; Buton, N.; Prodan, A.M. Textural, structural and biological evaluation of hydroxyapatite doped with zinc at low concentrations. Materials 2017, 10, 229. [Google Scholar] [CrossRef]
- Webster, T.J.; Massa-Schlueter, E.A.; Smith, J.L.; Slamovich, E.B. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 2004, 25, 2111–2121. [Google Scholar] [CrossRef] [PubMed]
- Khvostov, M.V.; Borisova, M.S.; Bulina, N.V.; Makarova, S.V.; Dumchenko, N.B.; Tolstikova, T.G.; Lyakhov, N.Z. The influence of zinc and silicate ions on biological properties of hydroxyapatite synthesized by a mechanochemical method. Ceram. Int. 2021, 47, 9495–9503. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Li, W. Zinc-containing hydroxyapatite enhances cold-light-activated tooth bleaching treatment in vitro. BioMed Res. Int. 2017, 2017, 6261248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Degree of Substitution (x) | Sample Designation | Equation of the Expected Chemical Reaction |
---|---|---|
0 | HA | 6.0 CaHPO4 + 4.0 CaO Ca10(PO4)6(OH)2 + 2 H2 O |
0.2 | 0.2-ZnSi-HA | 5.4 CaHPO4 + 4.4 CaO + 0.2 Zn(H2PO4)2·2 H2O + 0.2 SiO2·0.7 H2O Ca9.8Zn0.2(PO4)5.8(SiO4)0.2(OH)1.8 + 2.74 H2O |
0.6 | 0.6-ZnSi-HA | 4.2 CaHPO4 + 5.2 CaO + 0.6 Zn(H2PO4)2·2 H2O + 0.6 SiO2·0.7 H2O Ca9.4Zn0.6(PO4)5.4(SiO4)0.6(OH)1.4 + 4.22 H2O |
1.0 | 1.0-ZnSi-HA | 3.0 CaHPO4 + 6.0 CaO + 1.0 Zn(H2PO4)2·2 H2O + 1.0 SiO2·0.7 H2O Ca9.0Zn1.0(PO4)5.0(SiO4)1.0(OH)1.0 + 5.7 H2O |
1.5 | 1.5-ZnSi-HA | 1.5 CaHPO4 + 7.0 CaO + 1.5 Zn(H2PO4)2·2 H2O + 1.5 SiO2·0.7 H2O Ca8.5Zn1.5(PO4)4.5(SiO4)1.5(OH)0.5 + 7.55 H2O |
2.0 | 2.0-ZnSi-HA | 8.0 CaO + 2.0 Zn(H2PO4)2·2 H2O + 2.0 SiO2·0.7 H2O Ca8.0Zn2.0(PO4)4.0(SiO4)2.0 + 9.4 H2O |
Sample | Concentration (at.%) | |||||||
---|---|---|---|---|---|---|---|---|
Composition of Synthesized Materials | Expected Composition | |||||||
Ca | P | Zn | Si | Ca | P | Zn | Si | |
HA | 63.9 ± 8.3 | 36.1 ± 3.0 | - | - | 62 | 38 | - | - |
1.0-ZnSi-HA | 56.1 ± 3.5 | 29.1 ± 3.5 | 6.4 ± 1.5 | 8.4 ± 1.5 | 57 | 31 | 6 | 6 |
2.0-ZnSi-HA | 50.0 ± 2.8 | 22.6 ± 1.7 | 11.5 ± 0.5 | 15.9 ± 3.5 | 51 | 25 | 12 | 12 |
Sample | Optical Density of Formazan |
---|---|
HA | 0.584 ± 0.06 |
0.2-ZnSi-HA | 0.600 ± 0.08 |
0.6-ZnSi-HA | 0.477 ± 0.09 |
Control | 0.541 ± 0.05 |
Time (Day) | Concentration (ppm) | |||||
---|---|---|---|---|---|---|
HA | 0.2-ZnSi-HA | |||||
Ca | P | Ca | P | Si | Zn | |
1 | 2.8 ±0.4 | 0.7 ± 0.1 | 5.0 ± 0.6 | 2.1 ± 0.3 | 0.7 ± 0.1 | 0.13 ± 0.02 |
3 | 3.6 ±0.5 | 2.0 ± 0.3 | 3.3 ± 0.5 | 1.4 ± 0.2 | 1.3 ± 0.2 | 0. 06 ± 0.01 |
5 | 1.7 ± 0.4 | 1.0 ± 0.1 | 2.4 ± 0.4 | 1.1 ± 0.2 | 0.7 ± 0.1 | 0.08 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarova, S.V.; Bulina, N.V.; Golubeva, Y.A.; Klyushova, L.S.; Dumchenko, N.B.; Shatskaya, S.S.; Ishchenko, A.V.; Khvostov, M.V.; Dudina, D.V. Hydroxyapatite Double Substituted with Zinc and Silicate Ions: Possibility of Mechanochemical Synthesis and In Vitro Properties. Materials 2023, 16, 1385. https://doi.org/10.3390/ma16041385
Makarova SV, Bulina NV, Golubeva YA, Klyushova LS, Dumchenko NB, Shatskaya SS, Ishchenko AV, Khvostov MV, Dudina DV. Hydroxyapatite Double Substituted with Zinc and Silicate Ions: Possibility of Mechanochemical Synthesis and In Vitro Properties. Materials. 2023; 16(4):1385. https://doi.org/10.3390/ma16041385
Chicago/Turabian StyleMakarova, Svetlana V., Natalia V. Bulina, Yuliya A. Golubeva, Lyubov S. Klyushova, Natalya B. Dumchenko, Svetlana S. Shatskaya, Arcady V. Ishchenko, Mikhail V. Khvostov, and Dina V. Dudina. 2023. "Hydroxyapatite Double Substituted with Zinc and Silicate Ions: Possibility of Mechanochemical Synthesis and In Vitro Properties" Materials 16, no. 4: 1385. https://doi.org/10.3390/ma16041385
APA StyleMakarova, S. V., Bulina, N. V., Golubeva, Y. A., Klyushova, L. S., Dumchenko, N. B., Shatskaya, S. S., Ishchenko, A. V., Khvostov, M. V., & Dudina, D. V. (2023). Hydroxyapatite Double Substituted with Zinc and Silicate Ions: Possibility of Mechanochemical Synthesis and In Vitro Properties. Materials, 16(4), 1385. https://doi.org/10.3390/ma16041385