Epitaxial CdSe/PbSe Heterojunction Growth and MWIR Photovoltaic Detector
Abstract
:1. Introduction
2. Experimental Methods
2.1. Epitaxial Heterojunction Growth
2.2. Epitaxial Heterojunction Growth
3. Results and Discussion
3.1. Crystallography and Surface Morphology of Epitaxial CdSe Films on PbSe
3.2. Current-Voltage and Radiometric Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, J.; Weng, B.; Yuan, Z.; Shi, Z. Study of Sensitization Process on Mid-Infrared Uncooled PbSe Photoconductive Detectors Leads to High Detectivity. J. Appl. Phys. 2013, 113, 103102. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Qiu, J.; Weng, B.; Chang, C.; Yuan, Z.; Shi, Z. Understanding Sensitization Behavior of Lead Selenide Photoconductive Detectors by Charge Separation Model. J. Appl. Phys. 2014, 115, 084502. [Google Scholar] [CrossRef]
- Weng, B.; Qiu, J.; Yuan, Z.; Larson, P.R.; Strout, G.W.; Shi, Z. Responsivity Enhancement of Mid-Infrared PbSe Detectors Using CaF 2 Nano-Structured Antireflective Coatings. Appl. Phys. Lett. 2014, 104, 021109. [Google Scholar] [CrossRef] [Green Version]
- Green, K.; Yoo, S.-S.; Kauffman, C. Lead Salt TE-Cooled Imaging Sensor Development; Andresen, B.F., Fulop, G.F., Hanson, C.M., Norton, P.R., Eds.; SPIE: Baltimore, MD, USA, 24 June 2014; p. 90701G. [Google Scholar]
- Klann, R.; Höfer, T.; Buhleier, R.; Elsaesser, T.; Tomm, J.W. Fast Recombination Processes in Lead Chalcogenide Semiconductors Studied via Transient Optical Nonlinearities. J. Appl. Phys. 1995, 77, 277–286. [Google Scholar] [CrossRef]
- Findlay, P.C.; Pidgeon, C.R.; Kotitschke, R.; Hollingworth, A.; Murdin, B.N.; Langerak, C.J.G.M.; van der Meer, A.F.G.; Ciesla, C.M.; Oswald, J.; Homer, A.; et al. Auger Recombination Dynamics of Lead Salts under Picosecond Free-Electron-Laser Excitation. Phys. Rev. B 1998, 58, 12908–12915. [Google Scholar] [CrossRef] [Green Version]
- Ziep, O.; Mocker, M.; Genzow, D.; Herrmann, K.H. Auger recombination in PbSnTe-like semiconductors. Phys. Stat. Sol. B 1978, 90, 197–205. [Google Scholar] [CrossRef]
- Youngdale, E.R.; Meyer, J.R.; Hoffman, C.A.; Bartoli, F.J.; Grein, C.H.; Young, P.M.; Ehrenreich, H.; Miles, R.H.; Chow, D.H. Auger Lifetime Enhancement in InAs–Ga1−xInx Sb Superlattices. Appl. Phys. Lett. 1994, 64, 3160–3162. [Google Scholar] [CrossRef]
- Meyer, J.R.; Felix, C.L.; Bewley, W.W.; Vurgaftman, I.; Aifer, E.H.; Olafsen, L.J.; Lindle, J.R.; Hoffman, C.A.; Yang, M.-J.; Bennett, B.R.; et al. Auger Coefficients in Type-II InAs/Ga1−xInxSb Quantum Wells. Appl. Phys. Lett. 1998, 73, 2857–2859. [Google Scholar] [CrossRef]
- Ciesla, C.M.; Murdin, B.N.; Phillips, T.J.; White, A.M.; Beattie, A.R.; Langerak, C.J.G.M.; Elliott, C.T.; Pidgeon, C.R.; Sivananthan, S. Auger Recombination Dynamics of Hg0.795Cd0.205Te in the High Excitation Regime. Appl. Phys. Lett. 1997, 71, 491–493. [Google Scholar] [CrossRef]
- Beattie, A.R.; White, A.M. An Analytic Approximation with a Wide Range of Applicability for Electron Initiated Auger Transitions in Narrow-Gap Semiconductors. J. Appl. Phys. 1996, 79, 802. [Google Scholar] [CrossRef]
- Ganguly, S.; Tang, X.; Yoo, S.-S.; Guyot-Sionnest, P.; Ghosh, A.W. Extrinsic Voltage Control of Effective Carrier Lifetime in Polycrystalline PbSe Mid-Wave IR Photodetectors for Increased Detectivity. AIP Adv. 2020, 10, 095117. [Google Scholar] [CrossRef]
- Yang, H.; Wang, G.; Li, X.; Zheng, J. Effect of in Situ O+ Beam Induction on the Microstructures and Optical Properties of Polycrystalline Lead Selenide Films. Mater. Lett. 2019, 251, 85–88. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, Y.; Zhang, G.; Shi, K.; Li, Y.; Luo, Y. Modified Vapor Phase Deposition Technology for High-Performance Uncooled MIR PbSe Detectors. RSC Adv. 2021, 11, 34908–34914. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Pfeffer, M.; Schweda, E.; Eibl, O.; Qiu, J.; Shi, Z. PbSe Mid-IR Photoconductive Thin Films (Part I): Phase Analysis of the Functional Layer. J. Alloys Compd. 2017, 724, 316–326. [Google Scholar] [CrossRef]
- Kumar, P.; Pfeffer, M.; Berthold, C.; Eibl, O. PbSe Mid-IR Photoconductive Thin Films (Part-II): Structural Analysis of the Functional Layer. J. Alloys Compd. 2018, 735, 1654–1661. [Google Scholar] [CrossRef]
- Wu, H.; Si, J.; Xu, T.; Cao, C. Progress of IV-VI Semiconductor Research in China. In Proceedings of the 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Shanghai, China, 18–22 September 2006; IEEE: Shanghai, China; p. 407. [Google Scholar]
- Yang, H.; Li, X.; Wang, G.; Zheng, J. The Electrical Properties of Carrier Transport between Lead Selenide Polycrystallites Manipulated by Iodine Concentration. AIP Adv. 2018, 8, 085316. [Google Scholar] [CrossRef] [Green Version]
- McDowell, L.L.; Qiu, J.; Mirzaei, M.R.; Weng, B.; Shi, Z. Integration of Epitaxial IV–VI Pb-Chalcogenide on Group IV Vicinal Ge Substrate to Form p–n Heterogeneous Structures. Cryst. Growth Des. 2022, 22, 461–468. [Google Scholar] [CrossRef]
- McDowell, L.L.; Rastkar, M.; Shi, Z. Integration of Epitaxial N-PbSe Films on Mismatched p-Ge Substrates to Form a p-n Heterogeneous Structure. In Proceedings of the Infrared Technology and Applications XLVIII, Orlando, FL, USA, 30 May 2022; Fulop, G.F., Kimata, M., Zheng, L., Andresen, B.F., Miller, J.L., Kim, Y.-H., Eds.; SPIE: Orlando, FL, USA; p. 67. [Google Scholar]
- Weng, B.; Qiu, J.; Zhao, L.; Chang, C.; Shi, Z. CdS/PbSe Heterojunction for High Temperature Mid-Infrared Photovoltaic Detector Applications. Appl. Phys. Lett. 2014, 104, 121111. [Google Scholar] [CrossRef] [Green Version]
- Lach-hab, M.; Papaconstantopoulos, D.A.; Mehl, M.J. Electronic Structure Calculations of Lead Chalcogenides PbS, PbSe, PbTe. J. Phys. Chem. Solids 2002, 63, 833–841. [Google Scholar] [CrossRef]
- Samarth, N.; Luo, H.; Furdyna, J.K.; Qadri, S.B.; Lee, Y.R.; Ramdas, A.K.; Otsuka, N. Growth of Cubic (Zinc Blende) CdSe by Molecular Beam Epitaxy. Appl. Phys. Lett. 1989, 54, 2680–2682. [Google Scholar] [CrossRef]
- Muslih, E.Y.; Munir, B.; Khan, M.M. Advances in Chalcogenides and Chalcogenides-Based Nanomaterials Such as Sulfides, Selenides, and Tellurides. In Chalcogenide-Based Nanomaterials as Photocatalysts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 7–31. ISBN 978-0-12-820498-6. [Google Scholar]
- Hanson, C.J.; Hartmann, N.F.; Singh, A.; Ma, X.; DeBenedetti, W.J.I.; Casson, J.L.; Grey, J.K.; Chabal, Y.J.; Malko, A.V.; Sykora, M.; et al. Giant PbSe/CdSe/CdSe Quantum Dots: Crystal-Structure-Defined Ultrastable Near-Infrared Photoluminescence from Single Nanocrystals. J. Am. Chem. Soc. 2017, 139, 11081–11088. [Google Scholar] [CrossRef] [PubMed]
- Zaiats, G.; Yanover, D.; Vaxenburg, R.; Shapiro, A.; Safran, A.; Hesseg, I.; Sashchiuk, A.; Lifshitz, E. PbSe/CdSe Thin-Shell Colloidal Quantum Dots. Z. Phys. Chem. 2015, 229, 3–21. [Google Scholar] [CrossRef]
- Cirloganu, C.M.; Padilha, L.A.; Lin, Q.; Makarov, N.S.; Velizhanin, K.A.; Luo, H.; Robel, I.; Pietryga, J.M.; Klimov, V.I. Enhanced Carrier Multiplication in Engineered Quasi-Type-II Quantum Dots. Nat. Commun. 2014, 5, 4148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lystrom, L.; Tamukong, P.; Mihaylov, D.; Kilina, S. Phonon-Driven Energy Relaxation in PbS/CdS and PbSe/CdSe Core/Shell Quantum Dots. J. Phys. Chem. Lett. 2020, 11, 4269–4278. [Google Scholar] [CrossRef]
- Salzmann, B.B.V.; de Wit, J.; Li, C.; Arenas-Esteban, D.; Bals, S.; Meijerink, A.; Vanmaekelbergh, D. Two-Dimensional CdSe-PbSe Heterostructures and PbSe Nanoplatelets: Formation, Atomic Structure, and Optical Properties. J. Phys. Chem. C 2022, 126, 1513–1522. [Google Scholar] [CrossRef]
- Williams, K.R.; Diroll, B.T.; Watkins, N.E.; Rui, X.; Brumberg, A.; Klie, R.F.; Schaller, R.D. Synthesis of Type I PbSe/CdSe Dot-on-Plate Heterostructures with Near-Infrared Emission. J. Am. Chem. Soc. 2019, 141, 5092–5096. [Google Scholar] [CrossRef]
- De Geyter, B.; Justo, Y.; Moreels, I.; Lambert, K.; Smet, P.F.; Van Thourhout, D.; Houtepen, A.J.; Grodzinska, D.; de Mello Donega, C.; Meijerink, A.; et al. The Different Nature of Band Edge Absorption and Emission in Colloidal PbSe/CdSe Core/Shell Quantum Dots. ACS Nano 2011, 5, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dai, Q.; Li, X.; Cui, Q.; Gu, Z.; Zou, B.; Wang, Y.; Yu, W.W. Formation of PbSe/CdSe Core/Shell Nanocrystals for Stable Near-Infrared High Photoluminescence Emission. Nanoscale. Res. Lett. 2010, 5, 1279–1283. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, M.R.; Rostami, A.; Matloub, S.; Mirtaghizadeh, H. Ultra-High-Efficiency Luminescent Solar Concentrator Using Superimposed Colloidal Quantum Dots. Opt. Quantum Electron. 2020, 52, 327. [Google Scholar] [CrossRef]
- Zorman, B.; Ramakrishna, M.V.; Friesner, R.A. Quantum Confinement Effects in CdSe Quantum Dots. J. Phys. Chem. 1995, 99, 7649–7653. [Google Scholar] [CrossRef]
- Adachi, S. Properties of Group-IV, III–V and II–VI Semiconductors: Adachi/Properties of Group-IV, III–V and II–VI Semiconductors; John Wiley & Sons, Ltd.: Chichester, UK, 2005; ISBN 978-0-470-09034-3. [Google Scholar]
- Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Marchevsky, A.V.; Karakulina, O.M.; Abakumov, A.M.; Gaskov, A.M. Visible Light Activation of Room Temperature NO2 Gas Sensors Based on ZnO, SnO2 and In2O3 Sensitized with CdSe Quantum Dots. Thin Solid Film. 2016, 618, 253–262. [Google Scholar] [CrossRef]
- Swank, R.K. Surface Properties of II-VI Compounds. Phys. Rev. 1967, 153, 844–849. [Google Scholar] [CrossRef]
- Suzuki, H. Electron Affinity of Semiconducting Compound CdSe. Jpn. J. Appl. Phys. 1966, 5, 1253. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, Y.; Cai, Z.; Phan, Q.; Shi, Z. CdSe:In Mid-Infrared Transparent Conductive Films Prospering Uncooled PbSe/CdSe Heterojunction Photovoltaic Detectors. Mater. Adv. 2022, 3, 1079–1086. [Google Scholar] [CrossRef]
- Luo, Y.; McDowell, L.; Su, L.; Liu, Y.; Qiu, J.; Shi, Z. Enhanced Performance in Uncooled N-CdSe/p-PbSe Photovoltaic Detectors by High-Temperature Chloride Passivation. RSC Adv. 2022, 12, 8423–8428. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDowell, L.L.; Rastkar Mirzaei, M.; Shi, Z. Epitaxial CdSe/PbSe Heterojunction Growth and MWIR Photovoltaic Detector. Materials 2023, 16, 1866. https://doi.org/10.3390/ma16051866
McDowell LL, Rastkar Mirzaei M, Shi Z. Epitaxial CdSe/PbSe Heterojunction Growth and MWIR Photovoltaic Detector. Materials. 2023; 16(5):1866. https://doi.org/10.3390/ma16051866
Chicago/Turabian StyleMcDowell, Lance L., Milad Rastkar Mirzaei, and Zhisheng Shi. 2023. "Epitaxial CdSe/PbSe Heterojunction Growth and MWIR Photovoltaic Detector" Materials 16, no. 5: 1866. https://doi.org/10.3390/ma16051866
APA StyleMcDowell, L. L., Rastkar Mirzaei, M., & Shi, Z. (2023). Epitaxial CdSe/PbSe Heterojunction Growth and MWIR Photovoltaic Detector. Materials, 16(5), 1866. https://doi.org/10.3390/ma16051866