Synthesis of Natural-Inspired Materials by Irradiation: Data Mining from the Perspective of Their Functional Properties in Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Radiation-Induced Synthesis of Copolymers
2.3. Flocculation Investigation
2.4. Data Mining
2.4.1. Correlation Matrix
2.4.2. Bartlett’s Sphericity Test
2.4.3. Principal Component Analysis (PCA)
2.4.4. Agglomerative Hierarchical Clustering (AHC)
2.4.5. Decision Tree Prediction
2.4.6. Multiple Linear Regression (MLR)
2.4.7. Principal Component Regression (PCR)
2.4.8. Models’ Evaluation
3. Results
3.1. Flocculation Performances
3.2. Correlation Investigation
3.3. Dimensionality Reduction Study
3.4. Treatment Classification
3.5. Linear Modeling
4. Conclusions
- The starch-based copolymers synthesized in this work using different monomer concentrations, irradiation doses, and dose rates proved to have effective flocculation properties by reducing the quality parameters (TSS, COD, and FM) of the wastewater of an oil factory.
- The correlation between the input processing variables such as the PS:AMD ratio, D, and and the flocculation efficiency of the synthesized copolymers regarding TSS, COD, and FM showed that TSS has an excessively negative correlation with other variables, COD is positively correlated with both the monomer concentration and irradiation dose, and FM demonstrated a moderately positive correlation with the dose rate.
- The principal component analysis was able to correctly classify the correlation between the input processing variables and the target variables (copolymer functionalities) and determined the clustering of the treatments that had similar behavior as the principal components. High cumulative variability of ~80% and even ~91% could be explained after F3 and F4 PCs, respectively, with a majority contribution (~66%) of the first two PCs. All investigated treatments were segregated into three major clusters, of which cluster 1 included the largest number of treatments.
- The analysis for meeting the allowed regulatory limits for the functional variables studied (TSS ≥ 70%, COD ≥ 85%, and FM ≥ 85%) of the copolymers synthesized in this work revealed that (i) TSS always had the desired level within the range of input processing variables; (ii) COD was influenced by the monomer concentration, but mostly by the irradiation dose, so the result was that an optimal COD value of 88.3% could be expected for a PS:AMD between 1:9 and 1:12 and an irradiation dose range of 2–2.7 kGy; (iii) FM was mainly affected by the dose rate, which, for the interval 1.1–1.9 kGy/min, could favor obtaining permissive conditions at 85.7%.
- The consequences of linear modeling confirmed an acceptable accuracy for COD and FM, and the linear modeling along with the consequences of PCA in the structure of PCR could assist in simplifying the prediction equations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalid, S.; Shahid, M.; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. Int. J. Environ. Res. Public Health 2018, 15, 895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, S.A.; Bolan, N.; Madhubashani, A.M.; Vithanage, M.; Perera, V.; Wijesekara, H.; Wang, H.; Srivastava, P.; Kirkham, M.B.; Mickan, B.S.; et al. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. Environ. Pollut. 2022, 293, 118564. [Google Scholar] [CrossRef] [PubMed]
- The, C.Y.; Budiman, P.M.; Shak, K.P.; Wu, T.Y. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Precious Sibiya, N.; Rathilal, S.; Kweinor Tetteh, E. Coagulation treatment of wastewater: Kinetics and natural coagulant evaluation. Molecules 2021, 26, 698. [Google Scholar] [CrossRef]
- Qi, Y.; Thapa, K.B.; Hoadley, A.F. Application of filtration aids for improving sludge dewatering properties–a review. Chem. Eng. J. 2011, 171, 373–384. [Google Scholar] [CrossRef]
- Mohd-Salleh, S.N.; Mohd-Zin, N.S.; Othman, N. A review of wastewater treatment using natural material and its potential as aid and composite coagulant. Sains Malays. 2019, 48, 155–164. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Yan, N.; Farnood, R. Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv. 2018, 36, 92–119. [Google Scholar] [CrossRef]
- Maćczak, P.; Kaczmarek, H.; Ziegler-Borowska, M. Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment. Materials 2020, 13, 3951. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef]
- Zarei Mahmudabadi, T.; Ebrahimi, A.A.; Eslami, H.; Mokhtari, M.; Salmani, M.H.; Ghaneian, M.T.; Mohamadzadeh, M.; Pakdaman, M. Optimization and economic evaluation of modified coagulation–flocculation process for enhanced treatment of ceramic-tile industry wastewater. AMB Express 2018, 8, 172. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Y.; Tang, X.; Jiang, J.; He, Q.; Xiong, Z.; Zheng, H. Biopolymer-based flocculants: A review of recent technologies. Environ. Sci. Pollut. Res. 2021, 28, 46934–46963. [Google Scholar] [CrossRef]
- Sabbaghi, H. Perspective Chapter: Cellulose in Food Production—Principles and Innovations. In Cellulose—Fundamentals and Conversion into Biofuel and Useful Chemicals; Jeyakumar, R.B., Ed.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Sibiya, N.P.; Amo-Duodu, G.; Tetteh, E.K.; Rathilal, S. Model prediction of coagulation by magnetised rice starch for wastewater treatment using response surface methodology (RSM) with artificial neural network (ANN). Sci. Afr. 2022, 17, e01282. [Google Scholar] [CrossRef]
- Wang, K.; Ran, T.; Yu, P.; Chen, L.; Zhao, J.; Ahmad, A.; Ramzan, N.; Xu, X.; Xu, Y.; Shi, Y. Evaluation of renewable pH-responsive starch-based flocculant on treating and recycling of highly saline textile effluents. Environ. Res. 2021, 201, 111489. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Tong, X.; Pan, W.; Zeng, Q.; You, S.; Shen, J. Recent advances in polysaccharide-based adsorbents for wastewater treatment. J. Clean. Prod. 2021, 315, 128221. [Google Scholar] [CrossRef]
- Amaraweera, S.M.; Gunathilake, C.; Gunawardene, O.H.P.; Fernando, N.M.L.; Wanninayaka, D.B.; Dassanayake, R.S.; Rajapaksha, S.M.; Manamperi, A.; Fernando, C.A.N.; Kulatunga, A.K.; et al. Development of starch-based materials using current modification techniques and their applications: A review. Molecules 2021, 26, 6880. [Google Scholar] [CrossRef] [PubMed]
- Pino-Ramos, V.H.; Ramos-Ballesteros, A.; López-Saucedo, F.; López-Barriguete, J.E.; Varca, G.H.C.; Bucio, E. Radiation grafting for the functionalization and development of smart polymeric materials. Top. Curr. Chem. (Z) 2016, 374, 63. [Google Scholar] [CrossRef] [PubMed]
- Lertsarawut, P.; Rattanawongwiboon, T.; Tangthong, T.; Laksee, S.; Kwamman, T.; Phuttharak, B.; Romruensukharom, P.; Suwanmala, P.; Hemvichian, K. Starch-based super water absorbent: A promising and sustainable way to increase survival rate of trees planted in arid areas. Polymers 2021, 13, 1314. [Google Scholar] [CrossRef]
- Nemţanu, M.R.; Braşoveanu, M.; Pincu, E.; Meltzer, V. Water-soluble starch-based copolymers synthesized by electron beam irradiation: Physicochemical and functional characterization. Materials 2022, 15, 1061. [Google Scholar] [CrossRef]
- Weichert, D.; Link, P.; Stoll, A.; Rüping, S.; Ihlenfeldt, S.; Wrobel, S. A review of machine learning for the optimization of production processes. Int. J. Adv. Manuf. Technol. 2019, 104, 1889–1902. [Google Scholar] [CrossRef]
- Olawoye, B.; Fagbohun, O.F.; Gbadamosi, S.O.; Akanbi, C.T. Succinylation improves the slowly digestible starch fraction of cardaba banana starch. A process parameter optimization study. Artif. Intell. Agric. 2020, 4, 219–228. [Google Scholar] [CrossRef]
- Hamidi, D.; Fard, M.B.; Yetilmezsoy, K.; Alavi, J.; Zarei, H. Application of Orchis mascula tuber starch as a natural coagulant for oily-saline wastewater treatment: Modeling and optimization by multivariate adaptive regression splines method and response surface methodology. J. Environ. Chem. Eng. 2021, 9, 104745. [Google Scholar] [CrossRef]
- Lyu, Z.; Yu, Y.; Samali, B.; Rashidi, M.; Mohammadi, M.; Nguyen, T.N.; Nguyen, A. Back-Propagation neural network optimized by K-fold cross-validation for prediction of torsional strength of reinforced concrete beam. Materials 2022, 15, 1477. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Gou, J.; Zhang, K.; Ruan, J. Principal components and cluster analysis of trace elements in buckwheat flour. Foods 2023, 12, 225. [Google Scholar] [CrossRef]
- Brașoveanu, M.; Koleva, E.; Vutova, K.; Koleva, L.; Nemțanu, M.R. Optimization aspects on modification of starch using electron beam irradiation for the synthesis of water-soluble copolymers. Rom. J. Phys. 2016, 61, 1519–1529. [Google Scholar]
- Koleva, L.; Koleva, E.; Nemțanu, M.R.; Brașoveanu, M. Overall robust optimization approach for electron beam induced grafting processes. Electrotechnica & Electronica—E+E. 2019, 54, 153–160. [Google Scholar]
- Koleva, L.; Koleva, E.; Nemțanu, M.R.; Brașoveanu, M.; Tsonevska, T.; Dzharov, V. Overall robust optimization of biopolymer synthesis with linear electron accelerators. In Proceedings of the 2020 International Conference Automatics and Informatics (ICAI), Varna, Bulgaria, 1–3 October 2020. [Google Scholar] [CrossRef]
- Koleva, L.; Petrova, Z.; Koleva, E.; Braşoveanu, M.; Nemțanu, M.R.; Kolev, G. Multicriterial optimization strategies for electron beam grafting of corn starch. Math. Model. 2021, 5, 133–135. [Google Scholar]
- Koleva, E.; Koleva, L.; Braşoveanu, M.; Nemţanu, M.R. Experimental design sequential generation and overall D-efficiency criterion for electron beam grafting of corn starch. J. Phys. Conf. Ser. 2018, 1089, 012018. [Google Scholar] [CrossRef]
- SR 872:2005; Water Quality. Determination of Suspended Solids. Method by Filtration through Glass Fibre Filters. BSI Standards Publication: London, UK, 2005.
- SR ISO 6060:1996; Water Quality. Determination of the Chemical Oxygen Demand. BSI Standards Publication: London, UK, 1996.
- SR 7587:1996; Determination of Extractable Compounds with Solvents. Gravimetric Method. BSI Standards Publication: London, UK, 1996.
- Emerson, R.W. Causation and Pearson’s correlation coefficient. J. Vis. Impair. Blind. 2015, 109, 242–244. [Google Scholar] [CrossRef]
- Zar, J.H. Spearman rank correlation. In Encyclopedia of Biostatistics; Armitage, P., Colton, T., Eds.; Wiley: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Shrestha, N. Factor analysis as a tool for survey analysis. Am. J. Appl. Math. Stat. 2021, 9, 4–11. [Google Scholar] [CrossRef]
- Tobias, S.; Carlson, J.E. Brief report: Bartlett’s test of sphericity and chance findings in factor analysis. Multivar. Behav. Res. 1969, 4, 375–377. [Google Scholar] [CrossRef]
- Bartlett, M.S. The effect of standardization on a χ2 approximation in factor analysis. Biometrika 1951, 4, 337–344. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. Royal Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef] [Green Version]
- Olsen, R.L.; Chappell, R.W.; Loftis, J.C. Water quality sample collection, data treatment and results presentation for principal components analysis–literature review and Illinois River watershed case study. Water Res. 2012, 46, 3110–3122. [Google Scholar] [CrossRef] [PubMed]
- Holland, S.M. Principal Components Analysis (PCA); Department of Geology, University of Georgia: Athens, GA, USA, 2019. [Google Scholar]
- Abdi, H. The eigen-decomposition: Eigenvalues and eigenvectors. In Encyclopedia of Measurement and Statistics; Salkind, N., Ed.; Sage: Thousand Oaks, CA, USA, 2007; pp. 304–308. [Google Scholar]
- Haque, M.M.; Rahman, A.; Hagare, D.; Kibria, G. Principal component regression analysis in water demand forecasting: An application to the Blue Mountains, NSW, Australia. J. Hydrol. Environ. Res. 2013, 1, 49–59. [Google Scholar]
- Miyamoto, S.; Abe, R.; Endo, Y.; Takeshita, J.-I. Ward method of hierarchical clustering for non-Euclidean similarity measures. In Proceedings of the 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), Fukuoka, Japan, 13–15 November 2015; pp. 60–63. [Google Scholar] [CrossRef]
- Song, Y.-y.; Lu, Y. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Pires, J.C.; Martins, F.G.; Sousa, S.I.; Alvim-Ferraz, M.C.; Pereira, M.C. Selection and validation of parameters in multiple linear and principal component regressions. Environ. Model. Softw. 2008, 23, 50–55. [Google Scholar] [CrossRef]
- Sabbaghi, H.; Ziaiifar, A.M.; Kashaninejad, M. Design of fuzzy system for sensory evaluation of dried apple slices using infrared radiation. Iranian J. Biosyst. Eng. 2019, 50, 77–89. [Google Scholar] [CrossRef]
- Nemțanu, M.R.; Brașoveanu, M. Ionizing irradiation grafting of natural polymers having applications in wastewater treatment. In Polymer Science: Research Advances, Practical Applications and Educational Aspects; Méndez-Vilas, A., Solano-Martín, A., Eds.; Formatex Research Center: Badajoz, Spain, 2016; pp. 270–277. [Google Scholar]
- Nagy, M. Specific Contract No. 07.0201/2015/716466/SFRA/ENV.C.2 Implementing Framework Service Contract ENV.D2/FRA/2012/0013, European Asylum Support Office. Malta. Support to the Implementation of the UWWTD: COD Substitution Scoping Study. 2017. Available online: https://policycommons.net/artifacts/2069009/specific-contract-no/2824307/ (accessed on 14 February 2023).
- Banerjee, A.; Chitnis, U.B.; Jadhav, S.L.; Bhawalkar, J.S.; Chaudhury, S. Hypothesis testing, type I and type II errors. Ind. Psychiatry J. 2009, 18, 127–131. [Google Scholar] [CrossRef]
- Suhr, D.D. Principal component analysis vs. exploratory factor analysis. In Proceedings of the Thirtieth Annual of SAS® Users Group International Conference (SUGI 30), Philadelphia, PA, USA, 10–13 April 2005; pp. 203–230. [Google Scholar]
- Nemţanu, M.R.; Braşoveanu, M. Functional properties of some non-conventional treated starches. In Biopolymers; Eknashar, M., Ed.; Scyio: Rijeka, Croatia, 2010; pp. 319–344. [Google Scholar]
- Tavakol, M.; Wetzel, A. Factor Analysis: A means for theory and instrument development in support of construct validity. Int. J. Med. Educ. 2020, 11, 245–247. [Google Scholar] [CrossRef]
- Burstyn, I. Principal component analysis is a powerful instrument in occupational hygiene inquiries. Ann. Occup. Hyg. 2004, 48, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Swanson, D.A. On the relationship among values of the same summary measure of error when it is used across multiple characteristics at the same point in time: An examination of MALPE and MAPE. Rev. Econ. Finance 2015, 5, 1–14. [Google Scholar]
Raw Material | Chemical Formula | Chemical Properties |
---|---|---|
Potato Starch (PS) | (C6H10O5)n | pH-test: 7.3 (2% suspension) Loss on drying: 18% Residue on ignition: 0.3% |
Acrylamide (AMD) | CH2=CHCONH2 or C3H5NO | Molecular weight: 71.08 g/mol Density: 1.322 g/cm3 Boiling point: 125 °C/25 mm Melting point: 82–85 °C Flash point: 138 °C |
Sodium chloride | NaCl | Molecular weight: 58.44 g/mol Density: 2.165 g/cm3 Boiling point: 1413 °C Melting point: 801 °C |
Treatment Code | Batch 1 | Treatment Code | Batch 2 |
---|---|---|---|
T1 | PS-g-6AMD_1 | T10 | PS-g-12AMD_1 |
T2 | PS-g-6AMD_2 | T11 | PS-g-12AMD_2 |
T3 | PS-g-6AMD_3 | T12 | PS-g-12AMD_3 |
T4 | PS-g-6AMD_4 | T13 | PS-g-12AMD_4 |
T5 | PS-g-6AMD_5 | T14 | PS-g-12AMD_5 |
T6 | PS-g-6AMD_6 | T15 | PS-g-12AMD_6 |
T7 | PS-g-6AMD_7 | T16 | PS-g-12AMD_7 |
T8 | PS-g-6AMD_8 | T17 | PS-g-12AMD_8 |
T9 | PS-g-6AMD_9 | T18 | PS-g-12AMD_9 |
Variable | PS:AMD | D | TSS | COD | FM | |
---|---|---|---|---|---|---|
PS:AMD | 1 | 0.000 | 0.000 | −0.435 | 0.541 | −0.130 |
D | 0.000 | 1 | 0.416 | −0.312 | 0.515 | 0.249 |
0.000 | 0.416 | 1 | −0.208 | 0.385 | 0.300 | |
TSS | −0.435 | −0.312 | −0.208 | 1 | −0.608 | −0.275 |
COD | 0.541 | 0.515 | 0.385 | −0.608 | 1 | 0.439 |
FM | −0.130 | 0.249 | 0.300 | −0.275 | 0.439 | 1 |
Variable | PS:AMD | D | TSS | COD | FM | |
---|---|---|---|---|---|---|
PS:AMD | 1 | 0.000 | 0.000 | −0.471 | 0.461 | −0.225 |
D | 0.000 | 1 | 0.395 | −0.308 | 0.581 | 0.156 |
0.000 | 0.395 | 1 | −0.184 | 0.296 | 0.313 | |
TSS | −0.471 | −0.308 | −0.184 | 1 | −0.617 | −0.228 |
COD | 0.461 | 0.581 | 0.296 | −0.617 | 1 | 0.360 |
FM | −0.225 | 0.156 | 0.313 | −0.228 | 0.360 | 1 |
r | rs | |
---|---|---|
χ2 = Chi-square (Observed value) | 30.064 | 38.273 |
χ2 = Chi-square (Critical value) | 24.996 | 31.410 |
DF | 15 | 20 |
p-value | 0.012 | 0.008 |
Alpha | 0.05 | 0.05 |
Risk to reject H0 while it is true (type I error) | <1.17% | <0.82% |
Variable | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
PS:AMD | 0.278 | −0.670 | 0.010 | 0.334 | 0.383 | −0.465 |
D | 0.426 | 0.230 | −0.582 | −0.482 | −0.006 | −0.441 |
0.334 | 0.401 | −0.323 | 0.778 | −0.084 | 0.106 | |
TSS | −0.481 | 0.270 | −0.278 | 0.038 | 0.785 | −0.009 |
COD | 0.568 | −0.096 | 0.050 | −0.219 | 0.417 | 0.666 |
FM | 0.276 | 0.506 | 0.691 | −0.017 | 0.236 | −0.367 |
Variable | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
PS:AMD | 0.443 | −0.800 | 0.009 | 0.271 | 0.241 | −0.181 |
D | 0.678 | 0.274 | −0.532 | −0.391 | −0.004 | −0.172 |
0.531 | 0.479 | −0.295 | 0.630 | −0.053 | 0.041 | |
TSS | −0.765 | 0.323 | −0.254 | 0.030 | 0.494 | −0.004 |
COD | 0.904 | −0.115 | 0.045 | −0.177 | 0.262 | 0.260 |
FM | 0.439 | 0.604 | 0.632 | −0.014 | 0.149 | −0.143 |
Variable | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
PS:AMD | 7.740 | 44.840 | 0.010 | 11.165 | 14.664 | 21.581 |
D | 18.140 | 5.276 | 33.832 | 23.280 | 0.004 | 19.467 |
11.132 | 16.051 | 10.407 | 60.584 | 0.702 | 1.123 | |
TSS | 23.127 | 7.306 | 7.738 | 0.141 | 61.679 | 0.009 |
COD | 32.257 | 0.929 | 0.246 | 4.801 | 17.381 | 44.386 |
FM | 7.604 | 25.598 | 47.766 | 0.028 | 5.569 | 13.434 |
Variable | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
PS:AMD | 0.196 | 0.640 | 0.000 | 0.073 | 0.058 | 0.033 |
D | 0.459 | 0.075 | 0.283 | 0.153 | 0.000 | 0.030 |
0.282 | 0.229 | 0.087 | 0.398 | 0.003 | 0.002 | |
TSS | 0.586 | 0.104 | 0.065 | 0.001 | 0.244 | 0.000 |
COD | 0.817 | 0.013 | 0.002 | 0.032 | 0.069 | 0.067 |
FM | 0.193 | 0.365 | 0.400 | 0.000 | 0.022 | 0.020 |
Observations | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
T1 | −1.832 | 0.875 | 1.128 | 0.051 | 0.029 | −0.120 |
T2 | −1.872 | 0.914 | −0.188 | 0.511 | 0.438 | 0.440 |
T3 | −0.892 | 0.017 | 0.659 | 0.011 | −1.890 | 0.059 |
T4 | −1.751 | 0.806 | 0.584 | −0.803 | 0.300 | −0.375 |
T5 | −1.576 | 0.067 | −0.228 | −0.971 | −0.463 | 0.027 |
T6 | −2.809 | −0.227 | −1.822 | −0.277 | −0.642 | 0.028 |
T7 | 1.561 | 1.971 | 0.474 | 1.071 | −0.174 | 0.883 |
T8 | 1.425 | 1.799 | −0.269 | −0.673 | −0.314 | −0.337 |
T9 | 0.920 | 1.922 | −0.952 | −0.734 | 0.589 | −0.130 |
T10 | −1.167 | −1.608 | −0.286 | 0.462 | 1.015 | 0.629 |
T11 | 0.972 | −0.209 | 1.863 | 0.818 | 0.247 | −0.436 |
T12 | −1.585 | −1.161 | −0.425 | 0.794 | 0.224 | −0.682 |
T13 | 0.703 | −1.373 | 1.007 | −0.619 | 0.333 | 0.100 |
T14 | 1.235 | −2.063 | 0.530 | −0.841 | −0.579 | 0.491 |
T15 | 0.569 | −0.732 | 0.506 | −0.302 | 1.117 | −0.042 |
T16 | 1.087 | −0.487 | −1.181 | 1.918 | −0.185 | 0.401 |
T17 | 2.662 | −0.504 | −0.627 | −0.179 | −0.523 | −0.407 |
T18 | 2.351 | −0.007 | −0.774 | −0.238 | 0.477 | −0.529 |
Observations | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
T1 | 0.620 | 0.141 | 0.235 | 0.000 | 0.000 | 0.003 |
T2 | 0.698 | 0.166 | 0.007 | 0.052 | 0.038 | 0.038 |
T3 | 0.165 | 0.000 | 0.090 | 0.000 | 0.743 | 0.001 |
T4 | 0.622 | 0.132 | 0.069 | 0.131 | 0.018 | 0.029 |
T5 | 0.672 | 0.001 | 0.014 | 0.255 | 0.058 | 0.000 |
T6 | 0.672 | 0.004 | 0.282 | 0.007 | 0.035 | 0.000 |
T7 | 0.286 | 0.457 | 0.026 | 0.135 | 0.004 | 0.092 |
T8 | 0.338 | 0.539 | 0.012 | 0.075 | 0.016 | 0.019 |
T9 | 0.133 | 0.582 | 0.143 | 0.085 | 0.055 | 0.003 |
T10 | 0.240 | 0.456 | 0.014 | 0.038 | 0.182 | 0.070 |
T11 | 0.176 | 0.008 | 0.645 | 0.125 | 0.011 | 0.035 |
T12 | 0.484 | 0.260 | 0.035 | 0.122 | 0.010 | 0.090 |
T13 | 0.127 | 0.484 | 0.260 | 0.098 | 0.028 | 0.003 |
T14 | 0.208 | 0.580 | 0.038 | 0.096 | 0.046 | 0.033 |
T15 | 0.132 | 0.218 | 0.104 | 0.037 | 0.508 | 0.001 |
T16 | 0.177 | 0.035 | 0.208 | 0.550 | 0.005 | 0.024 |
T17 | 0.864 | 0.031 | 0.048 | 0.004 | 0.033 | 0.020 |
T18 | 0.826 | 0.000 | 0.089 | 0.008 | 0.034 | 0.042 |
Class | 1 | 2 | 3 |
---|---|---|---|
Objects | 8 | 4 | 6 |
Sum of weights | 8 | 4 | 6 |
Within-class variance | 0.044 | 0.280 | 0.027 |
Minimum distance to centroid | 0.098 | 0.325 | 0.080 |
Average distance to centroid | 0.189 | 0.452 | 0.145 |
Maximum distance to centroid | 0.279 | 0.497 | 0.209 |
T1 | T3 | T7 | |
T2 | T11 | T8 | |
T4 | T15 | T9 | |
T5 | T16 | T10 | |
T6 | T13 | ||
T12 | T14 | ||
T17 | |||
T18 |
Node | Pred (COD%) | Frequency | Rules |
---|---|---|---|
Node1 | 85.200 | 17 | - |
Node2 | 84.508 | 13 | If D in [0.6, 2], then COD = 84.508 in 76.5% of cases |
Node3 | 87.450 | 4 | If D in [2, 2.7], then COD = 87.450 in 23.5% of cases |
Node4 | 83.186 | 7 | If PS:AMD in [6, 9] and D in [0.6, 2], then COD = 83.186 in 41.2% of cases |
Node5 | 86.050 | 6 | If PS:AMD in [9, 12] and D in [0.6, 2], then COD = 86.050 in 35.3% of cases |
Node6 | 86.650 | 2 | If PS:AMD in [6, 9] and D in [2, 2.7], then COD = 86.650 in 11.8% of cases |
Node7 | 88.250 | 2 | If PS:AMD in [9, 12] and D in [2, 2.7], then COD = 88.250 in 11.8% of cases |
Node | Pred (FM%) | Frequency | Rules |
---|---|---|---|
Node1 | 83.141 | 17 | - |
Node2 | 80.867 | 9 | If in [0.7, 1.1], then FM = 80.867 in 52.9% of cases |
Node3 | 85.700 | 8 | If in [1.1, 1.9], then FM = 85.700 in 47.1% of cases |
Regression | Models | MAPE% |
---|---|---|
MLR | TSS = 101.991 − (1.411 × PS:AMD) − (3.787 × D) − (2.494 × ) | 8.842 |
COD = 77.320 + (0.461 × PS:AMD) + (1.569 × D) + (1.427 × ) | 1.412 | |
FM = 80.297 − (0.199 × PS:AMD) + (0.993 × D) + (2.961 × ) | 4.167 | |
PCR | TSS = 81.022 − (4.580 × F1) + (2.521 × F2) | 5.521 |
COD = 85.338 + (1.444 × F1) − (0.295 × F2) | 0.991 | |
FM = 83.255 + (1.412 × F1) + (2.187 × F2) | 2.710 | |
TSS = 81.022 − (4.507 × F1) + (2.407 × F2) − (2.518 × F3) | 5.172 | |
COD = 85.338 + (1.439 × F1) − (0.287 × F2) + (0.178 × F3) | 0.957 | |
FM = 83.255 + (1.319 × F1) + (2.333 × F2) + (3.225 × F3) | 1.021 | |
TSS = 81.022 − (4.526 × F1) + (2.425 × F2) − (2.487 × F3) + (0.771 × F4) | 5.159 | |
COD = 85.338 + (1.444 × F1) − (0.293 × F2) + (0.169 × F3) − (0.231 × F4) | 0.917 | |
FM = 83.255 + (1.326 × F1) + (2.326 × F2) + (3.214 × F3) − (0.286 × F4) | 0.978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braşoveanu, M.; Sabbaghi, H.; Nemţanu, M.R. Synthesis of Natural-Inspired Materials by Irradiation: Data Mining from the Perspective of Their Functional Properties in Wastewater Treatment. Materials 2023, 16, 2686. https://doi.org/10.3390/ma16072686
Braşoveanu M, Sabbaghi H, Nemţanu MR. Synthesis of Natural-Inspired Materials by Irradiation: Data Mining from the Perspective of Their Functional Properties in Wastewater Treatment. Materials. 2023; 16(7):2686. https://doi.org/10.3390/ma16072686
Chicago/Turabian StyleBraşoveanu, Mirela, Hassan Sabbaghi, and Monica R. Nemţanu. 2023. "Synthesis of Natural-Inspired Materials by Irradiation: Data Mining from the Perspective of Their Functional Properties in Wastewater Treatment" Materials 16, no. 7: 2686. https://doi.org/10.3390/ma16072686
APA StyleBraşoveanu, M., Sabbaghi, H., & Nemţanu, M. R. (2023). Synthesis of Natural-Inspired Materials by Irradiation: Data Mining from the Perspective of Their Functional Properties in Wastewater Treatment. Materials, 16(7), 2686. https://doi.org/10.3390/ma16072686