Structure and Oxidation Behavior of Multicomponent (Hf,Zr,Ti,Nb,Mo)C Carbide Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. (Hf,Zr,Ti,Nb,Mo)C Multicomponent Carbide Ceramic
3.2. The Study of Structural and Phase Condition of Multicomponent Ceramics under High-Temperature Conditions
4. Discussion
5. Conclusions
- (1)
- It is shown that during the mechanical processing of equimolar powder mixture of TiC–ZrC–NbC–HfC–Mo2C carbides, the formation of double and triple solid solutions occurs, which facilitates the formation of single-phase state (Hf,Zr,Ti,Nb,Mo)C in the sintering process.
- (2)
- The average ceramic (Hf,Zr,Ti,Nb,Mo)C grain size was equal at 3.8 ± 2.4 µm. The CTE was 7.3 × 10−6 °C−1 (25–700 °C), the hardness was found at 15 ± 0.8 GPa, the compressive strength was equal at 1.6 ± 0.1 GPa, the fracture toughness was seen at 4.4 ± 0.1 MPa∙m1/2.
- (3)
- A study of the oxide behavior of ceramic (Hf,Zr,Ti,Nb,Mo)C in the temperature range 25–1200 °C showed that the ceramic system (Hf,Zr,Ti,Nb,Mo)C remains stable when the temperature rises from 25 to 673 °C followed by two-stage oxidation accompanied by changes in oxidation products and mass of ceramic samples.
- (4)
- The microstructure of the oxidized surface of ceramic (Hf,Zr,Ti,Nb,Mo)C was studied. The temperature exposure on the sample’s surface was determined to form a layered structure with different microstructures and porosity. Furthermore, the oxygen diffusion into the ceramic material volume leads to the formation of an oxide layer of complex composition c–(Zr,Hf,Ti,Nb)O2, m–(Zr,Hf)O2, Nb2Zr6O17 and (Ti,Nb)O2 was suggested as a possible oxidation mechanism.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahrenholtz, W.G.; Hilmas, G.E. Ultra-High Temperature Ceramics: Materials for Extreme Environments. Scr. Mater. 2017, 129, 94–99. [Google Scholar] [CrossRef]
- Zhang, R.-Z.; Reece, M.J. Review of High Entropy Ceramics: Design, Synthesis, Structure and Properties. J. Mater. Chem. A Mater. 2019, 7, 22148–22162. [Google Scholar] [CrossRef]
- Wright, A.J.; Luo, J. A Step Forward from High-Entropy Ceramics to Compositionally Complex Ceramics: A New Perspective. J. Mater. Sci. 2020, 55, 9812–9827. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.-T.; Zhao, S.-J.; Wu, Z.-G. High-Entropy Carbide Ceramics: A Perspective Review. Tungsten 2021, 3, 131–142. [Google Scholar] [CrossRef]
- Wang, Y. Processing and Properties of High Entropy Carbides. Adv. Appl. Ceram. 2022, 121, 57–78. [Google Scholar] [CrossRef]
- Buyakova, S.P.; Dedova, E.S.; Wang, D.; Mirovoy, Y.A.; Burlachenko, A.G.; Buyakov, A.S. Phase Evolution during Entropic Stabilization of ZrC, NbC, HfC, and TiC. Ceram. Int. 2022, 48, 11747–11755. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-Solution Phase Formation Rules for Multi-Component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Zhang, P.-X.; Ye, L.; Chen, F.-H.; Han, W.-J.; Wu, Y.-H.; Zhao, T. Stability, Mechanical, and Thermodynamic Behaviors of (TiZrHfTaM)C (M = Nb, Mo, W, V, Cr) High-Entropy Carbide Ceramics. J. Alloys Compd. 2022, 903, 163868. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and Properties of High-Entropy Alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Castle, E.; Csanádi, T.; Grasso, S.; Dusza, J.; Reece, M. Processing and Properties of High-Entropy Ultra-High Temperature Carbides. Sci. Rep. 2018, 8, 8609. [Google Scholar] [CrossRef]
- Sarker, P.; Harrington, T.; Toher, C.; Oses, C.; Samiee, M.; Maria, J.-P.; Brenner, D.W.; Vecchio, K.S.; Curtarolo, S. High-Entropy High-Hardness Metal Carbides Discovered by Entropy Descriptors. Nat. Commun. 2018, 9, 4980. [Google Scholar] [CrossRef] [PubMed]
- Harrington, T.J.; Gild, J.; Sarker, P.; Toher, C.; Rost, C.M.; Dippo, O.F.; McElfresh, C.; Kaufmann, K.; Marin, E.; Borowski, L.; et al. Phase Stability and Mechanical Properties of Novel High Entropy Transition Metal Carbides. Acta Mater. 2019, 166, 271–280. [Google Scholar] [CrossRef]
- Wang, K.; Chen, L.; Xu, C.; Zhang, W.; Liu, Z.; Wang, Y.; Ouyang, J.; Zhang, X.; Fu, Y.; Zhou, Y. Microstructure and Mechanical Properties of (TiZrNbTaMo)C High-Entropy Ceramic. J. Mater. Sci. Technol. 2020, 39, 99–105. [Google Scholar] [CrossRef]
- Sun, Q.; Tan, H.; Zhu, S.; Zhu, Z.; Wang, L.; Cheng, J.; Yang, J. Single-Phase (Hf-Mo-Nb-Ta-Ti)C High-Entropy Ceramic: A Potential High Temperature Anti-Wear Material. Tribol. Int. 2021, 157, 106883. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, W.; Zhu, S.; Cheng, J.; Tan, H.; Chen, J.; Guo, J.; Yang, J. A (Hf0.2Mo0.2Nb0.2Ta0.2Ti0.2)C System High-Entropy Ceramic with Excellent Mechanical and Tribological Properties Prepared at Low Temperature. Tribol. Int. 2023, 184, 108471. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, C.; Li, S.; Han, X.; Xue, J.; Liu, T.; Zhou, X.; Zhang, H. Oxidation Behaviours of High-Entropy Transition Metal Carbides in 1200 °C Water Vapor. J. Alloys Compd. 2020, 816, 152523. [Google Scholar] [CrossRef]
- Ye, B.; Wen, T.; Liu, D.; Chu, Y. Oxidation Behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C High-Entropy Ceramics at 1073-1473 K in Air. Corros. Sci. 2019, 153, 327–332. [Google Scholar] [CrossRef]
- Ye, B.; Wen, T.; Chu, Y. High-temperature Oxidation Behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C High-entropy Ceramics in Air. J. Am. Ceram. Soc. 2020, 103, 500–507. [Google Scholar] [CrossRef]
- Wang, H.; Cao, Y.; Liu, W.; Wang, Y. Oxidation Behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-XSiC Ceramics at High Temperature. Ceram. Int. 2020, 46, 11160–11168. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Cao, Y.; Liu, W.; Wang, Y. Oxidation Behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300–1500 °C. J. Mater. Sci. Technol. 2021, 60, 147–155. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Zhang, B.; Skurikhina, O.; Balaz, P.; Araullo-Peters, V.; Reece, M.J. The Role of Multi-Elements and Interlayer on the Oxidation Behaviour of (Hf-Ta-Zr-Nb)C High Entropy Ceramics. Corros. Sci. 2020, 176, 109019. [Google Scholar] [CrossRef]
- Backman, L.; Gild, J.; Luo, J.; Opila, E.J. Part II: Experimental Verification of Computationally Predicted Preferential Oxidation of Refractory High Entropy Ultra-High Temperature Ceramics. Acta Mater. 2020, 197, 81–90. [Google Scholar] [CrossRef]
- Backman, L.; Gild, J.; Luo, J.; Opila, E.J. Part I: Theoretical Predictions of Preferential Oxidation in Refractory High Entropy Materials. Acta Mater. 2020, 197, 20–27. [Google Scholar] [CrossRef]
- Backman, L.; Opila, E.J. Thermodynamic Assessment of the Group IV, V and VI Oxides for the Design of Oxidation Resistant Multi-Principal Component Materials. J. Eur. Ceram. Soc. 2019, 39, 1796–1802. [Google Scholar] [CrossRef]
- Wang, H.; Han, X.; Liu, W.; Wang, Y. Oxidation Behavior of High-Entropy Carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C at 1400–1600 °C. Ceram. Int. 2021, 47, 10848–10854. [Google Scholar] [CrossRef]
- Lee, J.S.; Oyama, S.T.; Boudart, M. Molybdenum Carbide Catalysts I. Synthesis of Unsupported Powders. J. Catal. 1987, 106, 125–133. [Google Scholar] [CrossRef]
- Cheng, L.; Li, W.; Chen, Z.; Ai, J.; Zhou, Z.; Liu, J. DFT Study of Oxygen Adsorption on Mo 2 C(001) and (201) Surfaces at Different Conditions. Appl. Surf. Sci. 2017, 411, 394–399. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Miller, A.D.; Mueller, J.I. Solubility of Oxygen in ZrC. J. Am. Ceram. Soc. 1972, 55, 628–630. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Xu, C.; Lu, W.; Wang, Y.; Ouyang, J.; Zhou, Y. Densification, Microstructure and Mechanical Properties of Multicomponent (TiZrHfNbTaMo)C Ceramic Prepared by Pressureless Sintering. J. Mater. Sci. Technol. 2021, 72, 23–28. [Google Scholar] [CrossRef]
- Luo, S.-C.; Guo, W.-M.; Fang, Z.-L.; Plucknett, K.; Lin, H.-T. Effect of Carbon Content on the Microstructure and Mechanical Properties of High-Entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx Ceramics. J. Eur. Ceram. Soc. 2022, 42, 336–343. [Google Scholar] [CrossRef]
- Charpentier, L.; Balat-Pichelin, M.; Sciti, D.; Silvestroni, L. High Temperature Oxidation of Zr- and Hf-Carbides: Influence of Matrix and Sintering Additive. J. Eur. Ceram. Soc. 2013, 33, 2867–2878. [Google Scholar] [CrossRef]
- Shimada, S.; Inagaki, M.; Suzuki, M. Microstructural Observation of the ZrC/ZrO2 Interface Formed by Oxidation of ZrC. J. Mater. Res. 1996, 11, 2594–2597. [Google Scholar] [CrossRef]
- Shabalin, I.L. Ultra-High Temperature Materials II; Springer: Dordrecht, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Shabalin, I.L. Ultra-High Temperature Materials III; Springer: Dordrecht, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Shimada, S. Interfacial Reaction on Oxidation of Carbides with Formation of Carbon. Solid State Ion. 2001, 141–142, 99–104. [Google Scholar] [CrossRef]
- Shi, L.; Gu, Y.; Chen, L.; Yang, Z.; Ma, J.; Qian, Y. Synthesis and Oxidation Behavior of Nanocrystalline Niobium Carbide. Solid State Ion. 2005, 176, 841–843. [Google Scholar] [CrossRef]
- Chen, Z.; Meng, Z.; Liu, L.; Wang, H.; Sun, Y.; Wang, X. Structural and Viscous Insight into Impact of MoO3 on Molten Slags. Metall. Mater. Trans. B 2021, 52, 3730–3743. [Google Scholar] [CrossRef]
- Darujati, A. Oxidation Stability of Mo2C Catalysts under Fuel Reforming Conditions. Appl. Catal. A Gen. 2003, 253, 397–407. [Google Scholar] [CrossRef]
Spectrum | Element Content, at % | |||||
---|---|---|---|---|---|---|
O | Hf | Zr | Ti | Nb | Mo | |
Integral | 76.1 | 3.2 | 5.0 | 6.7 | 8.0 | 1.0 |
1 | 84.4 | 1.5 | 5.0 | 4.3 | 4.8 | – |
2 | 86.5 | 2.5 | 11.0 | – | – | – |
3 | 77.2 | 4.0 | – | 6.0 | 12.8 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirovaya, E.; Burlachenko, A.; Kulagin, N.; Mirovoy, Y.; Neiman, A.; Buyakova, S. Structure and Oxidation Behavior of Multicomponent (Hf,Zr,Ti,Nb,Mo)C Carbide Ceramics. Materials 2023, 16, 3163. https://doi.org/10.3390/ma16083163
Mirovaya E, Burlachenko A, Kulagin N, Mirovoy Y, Neiman A, Buyakova S. Structure and Oxidation Behavior of Multicomponent (Hf,Zr,Ti,Nb,Mo)C Carbide Ceramics. Materials. 2023; 16(8):3163. https://doi.org/10.3390/ma16083163
Chicago/Turabian StyleMirovaya, Elena, Alexander Burlachenko, Nikolay Kulagin, Yuriy Mirovoy, Alexey Neiman, and Svetlana Buyakova. 2023. "Structure and Oxidation Behavior of Multicomponent (Hf,Zr,Ti,Nb,Mo)C Carbide Ceramics" Materials 16, no. 8: 3163. https://doi.org/10.3390/ma16083163
APA StyleMirovaya, E., Burlachenko, A., Kulagin, N., Mirovoy, Y., Neiman, A., & Buyakova, S. (2023). Structure and Oxidation Behavior of Multicomponent (Hf,Zr,Ti,Nb,Mo)C Carbide Ceramics. Materials, 16(8), 3163. https://doi.org/10.3390/ma16083163