Additive Manufacturing of Earth-Based Materials: A Literature Review on Mortar Composition, Extrusion, and Processing Earth
Abstract
:1. Introduction
2. Review Methodology
- Only publications between 2013 and 2023 (inclusive) were considered relevant; previous studies were excluded due to the existing technology gap.
- Only publications written in English were reviewed.
- The reviewed work must have been focused on material extrusion of clay-based mortars; other digital manufacturing approaches or review papers will only be briefly mentioned.
- The reviewed work must address actual building components/prototypes, either on a small scale (e.g., modular components, bricks/blocks) or on a large scale (e.g., full-size walls); cladding, artistic, furnisher, and non-functional pieces are excluded.
- Only clayey soil/earth are considered; sand, salt block, and so on are excluded.
- Calcinated clay, nanoclay, and geopolymers are excluded from this review.
- Focus has been placed on work that involved actual experiments rather than pure theoretical work; theoretical approaches or review papers will be mentioned, but not discussed or analyzed at significant length.
Terminology | Combined Terminology |
---|---|
Additive manufacturing | Additive manufacturing AND (earth OR clay OR cob OR mud) AND ((based AND material) OR based mortar) |
3D printing/3D printed, 3DP | (3D printing/3D printed, 3DP) AND (earth OR clay OR cob OR mud) AND ((based AND material) OR based mortar) |
Material extrusion | Material extrusion AND (earth OR clay OR cob OR mud) AND ((based AND material) OR based mortar) |
3. Processing Earth Material for Additive Manufacturing
3.1. Earth-Based Mortars Used in Additive Manufacturing in the Literature
3.1.1. Fresh and Hardened Properties
3.1.2. The Impact of Using Stabilizers Other Than Fibers
3.1.3. The Impact of Employing Dispersants on Clay
3.1.4. The Effect of Incorporating Fibers
3.2. Pumpability
3.3. Extrudability
3.4. Buildability
4. Eco-Efficiency of Printable Earth-Based Solutions
4.1. Eco-Efficiency of Earth Building Products
4.2. Sustainability of Additive Manufacturing Earth
4.3. Functionality of Printable Earth Building Walls
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruno, P.; Faria, P.; Candeias, A.; Mirão, J. Earth Mortars from Pre-Historic Habitat Settlements in South Portugal Case Studies. J. Iber. Archaeol. 2010, 13, 51–67. [Google Scholar]
- ICOMOS Spain. Available online: https://icomos.es/comunicado-sobre-el-terremoto-en-marruecos-y-los-danos-causados-al-patrimonio-arquitectonico/ (accessed on 12 September 2023).
- Marsh, A.T.M.; Kulshreshtha, Y. The State of Earthen Housing Worldwide: How Development Affects Attitudes and Adoption. Build. Res. Inf. 2022, 50, 485–501. [Google Scholar] [CrossRef]
- Houben, H.; Guillaud, H.; Dayre, M. Traité de Construction en Terre, 3rd ed.; Éd. Parenthèses: Marseille, France, 2006; ISBN 978-2-86364-161-3. [Google Scholar]
- Rigassi, V. Compressed Earth Blocks: A Publication of Deutsches Zentrum Für Entwicklungstechnologien—GATE, a Division of the Deutsche Gesellschaft Für Technische Zusammenarbeit (GTZ) GmbH in Coordination with the Building Advisory Service and Information Network—BASIN. 1: Manual of Production/Vincent Rigassi; Vieweg: Braunschweig, Germany, 1995; ISBN 978-3-528-02079-8. [Google Scholar]
- Giuffrida, G.; Caponetto, R.; Cuomo, M. An Overview on Contemporary Rammed Earth Buildings: Technological Advances in Production, Construction and Material Characterization. IOP Conf. Ser. Earth Environ. Sci. 2019, 296, 012018. [Google Scholar] [CrossRef]
- Arduin, D.; Caldas, L.R.; Paiva, R.D.L.M.; Rocha, F. Life Cycle Assessment (LCA) in Earth Construction: A Systematic Literature Review Considering Five Construction Techniques. Sustainability 2022, 14, 13228. [Google Scholar] [CrossRef]
- Hamard, E.; Cazacliu, B.; Razakamanantsoa, A.; Morel, J.-C. Cob, a Vernacular Earth Construction Process in the Context of Modern Sustainable Building. Build. Environ. 2016, 106, 103–119. [Google Scholar] [CrossRef]
- Parracha, J.L.; Lima, J.; Freire, M.T.; Ferreira, M.; Faria, P. Vernacular Earthen Buildings from Leiria, Portugal—Material Characterization. Int. J. Archit. Herit. 2021, 15, 1285–1300. [Google Scholar] [CrossRef]
- Sangma, S.; Tripura, D.D. Experimental Study on Shrinkage Behaviour of Earth Walling Materials with Fibers and Stabilizer for Cob Building. Constr. Build. Mater. 2020, 256, 119449. [Google Scholar] [CrossRef]
- Parracha, J.L.; Silva, A.S.; Cotrim, M.; Faria, P. Mineralogical and Microstructural Characterisation of Rammed Earth and Earthen Mortars from 12th Century Paderne Castle. J. Cult. Herit. 2020, 42, 226–239. [Google Scholar] [CrossRef]
- Hurtado, E.; Eloualid, I. Engineered Cast Earth. Available online: https://www.researchgate.net/publication/318779416_ENGINEERED_CAST_EARTH?channel=doi&linkId=597e0a18a6fdcc1a9accb0df&showFulltext=true (accessed on 12 September 2023).
- Akipek, F.O.; Yazar, T. Common Action Walls. Available online: https://www.youtube.com/watch?v=QKFKbCLLX5c (accessed on 12 September 2023).
- Kloft, H.; Loccarini, F.; Delille, C.; Oechsler, J.; Gosslar, J. Robotische Fabrikation von Bauteilen Aus Stampflehm, DBZ. (Robotic Fabrication of Elements from Rammed Earth). In Regionales Bauen Bautechnik|Stampflehmproduktion; Gütersloh, Germany, 2019; pp. 54–59. [Google Scholar]
- Form Earth Free Form Rammed Earth. Available online: https://www.youtube.com/c/Formearth (accessed on 12 September 2023).
- ERNE AG Holzbau; Robotic Rammed Earth, Innovation Booster—Circular Building Industry. Available online: https://www.linkedin.com/feed/update/urn:li:activity:6990574421816045568/ (accessed on 12 September 2023).
- Doerfler, K.; Ernst, S.; Piškorec, L.; Willmann, J.; Helm, V.; Gramazio, F.; Kohler, M. Remote Material Deposition. In Proceedings of the What’s the Matter: Materiality and Materialism at the Age of Computation, Barcelona, Spain, 4–6 September 2014; p. 201. [Google Scholar]
- Kohler, G.; Ming, C. Clay Rotunda—Gramazio Kohler Research, ETH Zurich. Available online: https://gramaziokohler.arch.ethz.ch/web/e/projekte/430.html (accessed on 12 September 2023).
- Bravo, M.; Chaltiel, S. Monolithic Earthen Shells Digital Fabrication: Hybrid Workflow. In Humanizing Digital Reality; De Rycke, K., Gengnagel, C., Baverel, O., Burry, J., Mueller, C., Nguyen, M.M., Rahm, P., Thomsen, M.R., Eds.; Springer: Singapore, 2018; pp. 509–521. ISBN 978-981-10-6610-8. [Google Scholar]
- Bravo, M.; Chaltiel, S.; Carazas, W. Matter-Robotic Calibration for Bioshotcrete. TdD 2018, 34, 80–91. [Google Scholar] [CrossRef]
- Bonwetsch, T.; Kohler, M. Digitally Fabricating Non-Standardised Brick Walls. In Proceedings of the Manubuild 1st International Conference, Rotterdam, The Netherlands, 25–26 April 2017; pp. 191–196. [Google Scholar]
- Paul, S.C.; Tay, Y.W.D.; Panda, B.; Tan, M.J. Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction. Arch. Civ. Mech. Eng. 2018, 18, 311–319. [Google Scholar] [CrossRef]
- Bhattacherjee, S.; Basavaraj, A.S.; Rahul, A.V.; Santhanam, M.; Gettu, R.; Panda, B.; Schlangen, E.; Chen, Y.; Copuroglu, O.; Ma, G.; et al. Sustainable Materials for 3D Concrete Printing. Cem. Concr. Compos. 2021, 122, 104156. [Google Scholar] [CrossRef]
- Batikha, M.; Jotangia, R.; Baaj, M.Y.; Mousleh, I. 3D Concrete Printing for Sustainable and Economical Construction: A Comparative Study. Autom. Constr. 2022, 134, 104087. [Google Scholar] [CrossRef]
- Akhtar, A.; Sarmah, A.K. Construction and Demolition Waste Generation and Properties of Recycled Aggregate Concrete: A Global Perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- Daher, J.; Kleib, J.; Benzerzour, M.; Abriak, N.-E.; Aouad, G. The Development of Soil-Based 3D-Printable Mixtures: A Mix-Design Methodology and a Case Study. Buildings 2023, 13, 1618. [Google Scholar] [CrossRef]
- WASP. 3D Printed Houses for a Renewed Balance between Environment and Technology—EREMO. Available online: https://www.3dwasp.com/en/3d-printed-houses-for-a-renewed-balance-between-environment-and-technology/ (accessed on 12 September 2023).
- WASP. The First 3D Printed House with Earth|Gaia. Available online: https://www.3dwasp.com/en/3d-printed-house-gaia/ (accessed on 12 September 2023).
- WASP. MCA Tecla. Available online: https://www.3dwasp.com/en/3d-printed-house-tecla/ (accessed on 12 September 2023).
- WASP; Tiny, B.E. The House of Dust. Available online: https://www.3dwasp.com/en/crowdfunding-for-the-house-of-dust/ (accessed on 12 September 2023).
- WASP; Chiuri, M.G. 3D Prints a Unique Concept Store in Collaboration with Dior. Available online: https://www.3dwasp.com/en/3d-printed-pop-up-store-wasp-dior/ (accessed on 12 September 2023).
- Rael, R.; Fratello, V.S.; Rael, M.; Curth, S.; Arja, L.; Defelici, D. Mud Frontiers: Part II—Emerging Objects. Available online: https://emergingobjects.com/project/mud-frontiers-part-ii/ (accessed on 12 September 2023).
- Rael, R.; Fratello, V.S.; Rael, M.; Arja, L. MudFrontiers Part IV—Emerging Objects. Available online: https://www.instagram.com/p/CSIjhkoj1ml/ (accessed on 12 September 2023).
- Rael, R.; Fratello, V.S. Casa Covida. Available online: https://www.rael-sanfratello.com/made/casa-covida (accessed on 12 September 2023).
- Gomaa, M.; Jabi, W.; Soebarto, V.; Xie, Y.M. Digital Manufacturing for Earth Construction: A Critical Review. J. Clean. Prod. 2022, 338, 130630. [Google Scholar] [CrossRef]
- WASP. Aït Ben Haddou/Clay and 3d Printing. Available online: https://www.3dwasp.com/en/ait-ben-haddou-clay-3d-printing/ (accessed on 12 September 2023).
- Giannakopoulos, S. Pylos Project- Robotic 3D Printing of Clay. Institute for Advanced Architecture of Catalonia. Available online: https://iaac.net/project/pylos/ (accessed on 12 September 2023).
- Chatzivasileiadi, I.; Wardhana, N. Digital COBstruction—2017—Welsh School of Architecture, Cardiff University. Available online: https://www.youtube.com/watch?v=RH5g6eA8ng8&t=296s (accessed on 12 September 2023).
- Izard, J.-B.; Dubor, A.; Hervé, P.-E.; Cabay, E.; Culla, D.; Rodriguez, M.; Barrado, M. Large-Scale 3D Printing with Cable-Driven Parallel Robots. Constr. Robot 2017, 1, 69–76. [Google Scholar] [CrossRef]
- Kontovourkis, O.; Tryfonos, G. Integrating Parametric Design with Robotic Additive Manufacturing for 3D Clay Printing: An Experimental Study. In Proceedings of the 35th International Symposium on Automation and Robotics in Construction, Berlin, Germany, 22 July 2018. [Google Scholar]
- Dubor, A.; Cabay, E.; Chronis, A. Energy Efficient Design for 3D Printed Earth Architecture. In Humanizing Digital Reality; De Rycke, K., Gengnagel, C., Baverel, O., Burry, J., Mueller, C., Nguyen, M.M., Rahm, P., Thomsen, M.R., Eds.; Springer: Singapore, 2018; pp. 383–393. ISBN 978-981-10-6610-8. [Google Scholar]
- Chang, Y.-C.; Fiore, D.; Sevostianov, F.; van Stirum, G.L.; Refalian, G.; Li, Q.; Riaz, S.R.; Ye, D. Digital Adobe—IAAC. Institute for Advanced Architecture of Catalonia. Available online: https://iaac.net/project/digital-adobe/ (accessed on 12 September 2023).
- Veliz Reyes, A.; Gomaa, M.; Chatzivasileiadi, A.; Jabi, W.; Wardhana, N.M. Computing Craft—Early Stage Development of a Robotically-Supported 3D Printing System for Cob Structures. In Proceedings of the 36th eCAADe Conference, Lodz, Poland, 19–21 September 2018; pp. 791–800. [Google Scholar]
- Perrot, A.; Rangeard, D.; Courteille, E. 3D Printing of Earth-Based Materials: Processing Aspects. Constr. Build. Mater. 2018, 172, 670–676. [Google Scholar] [CrossRef]
- D’Haese, R.; Dubois, V.; Carpentier, O.; Chartier, T.; Chafei, S.; Wirquin, E. Composite for Additive Manufacturing Including Flax Byproducts and Quarry Fines. In Proceedings of the 2nd EuroMaghrébine Conf. BioComposites, Hammamet, Tunis, 1–3 November 2018. [Google Scholar]
- Dubor, A.; Izard, J.-B.; Cabay, E.; Sollazzo, A.; Markopoulou, A.; Rodriguez, M. On-Site Robotics for Sustainable Construction. In Robotic Fabrication in Architecture, Art and Design 2018; Willmann, J., Block, P., Hutter, M., Byrne, K., Schork, T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 390–401. ISBN 978-3-319-92293-5. [Google Scholar]
- Guihéneuf, S.; Rangeard, D.; Perrot, A.; Rennes, I. Addition of Bio Based Reinforcement to Improve Workability, Mechanical Properties and Water Resistance of Earth-Based Materials. Acad. J. Civ. Eng. 2019, 37, 184–192. [Google Scholar] [CrossRef]
- Venturi, T.; Turrin, M.; Setaki, F.; Veer, F.; Pronk, A.; Teuffel, P.; Moonen, Y.; Slangen, S.; Vorstermans, R. Terra–Ink. SPOOL 2019, 6, 41–46. [Google Scholar] [CrossRef]
- IAAC; WASP. 3D Printed Earth Wall with Embedded Staircase. Available online: https://www.3dwasp.com/en/3d-printed-wall/ (accessed on 12 September 2023).
- Veliz Reyes, A.; Jabi, W.; Gomaa, M.; Chatzivasileiadi, A.; Ahmad, L.; Wardhana, N.M. Negotiated Matter: A Robotic Exploration of Craft-Driven Innovation. Archit. Sci. Rev. 2019, 62, 398–408. [Google Scholar] [CrossRef]
- Gomaa, M.; Carfrae, J.; Goodhew, S.; Jabi, W.; Veliz Reyes, A. Thermal Performance Exploration of 3D Printed Cob. Archit. Sci. Rev. 2019, 62, 230–237. [Google Scholar] [CrossRef]
- Kontovourkis, O.; Tryfonos, G.; Georgiou, C. Robotic Additive Manufacturing (RAM) with Clay Using Topology Optimization Principles for Toolpath Planning: The Example of a Building Element. Archit. Sci. Rev. 2020, 63, 105–118. [Google Scholar] [CrossRef]
- Kontovourkis, O.; Tryfonos, G. Robotic 3D Clay Printing of Prefabricated Non-Conventional Wall Components Based on a Parametric-Integrated Design. Autom. Constr. 2020, 110, 103005. [Google Scholar] [CrossRef]
- Fratello, V.S.; Rael, R. MUD Frontiers. In Fabricate 2020: Making Resilient Architecture; UCL Press: London, UK, 2020; pp. 22–27. [Google Scholar]
- Gomaa, M.; Jabi, W.; Veliz Reyes, A.; Soebarto, V. 3D Printing System for Earth-Based Construction: Case Study of Cob. Autom. Constr. 2021, 124, 103577. [Google Scholar] [CrossRef]
- Gomaa, M.; Vaculik, J.; Soebarto, V.; Griffith, M.; Jabi, W. Feasibility of 3DP Cob Walls under Compression Loads in Low-Rise Construction. Constr. Build. Mater. 2021, 301, 124079. [Google Scholar] [CrossRef]
- Ferretti, E.; Moretti, M.; Chiusoli, A.; Naldoni, L.; De Fabritiis, F.; Visonà, M. Rice Husk Shredding as a Means of Increasing the Long-Term Mechanical Properties of Earthen Mixtures for 3D Printing. Materials 2021, 15, 743. [Google Scholar] [CrossRef]
- Ferretti, E.; Moretti, M.; Chiusoli, A.; Naldoni, L.; De Fabritiis, F.; Visonà, M. Mechanical Properties of a 3D-Printed Wall Segment Made with an Earthen Mixture. Materials 2022, 15, 438. [Google Scholar] [CrossRef]
- Alqenaee, A.; Memari, A. Experimental Study of 3D Printable Cob Mixtures. Constr. Build. Mater. 2022, 324, 126574. [Google Scholar] [CrossRef]
- Bryson, Z.E.; Srubar, W.V.; Kawashima, S.; Ben-Alon, L. Towards 3D Printed Earth and Bio-Based Insulation Materials: A Case Study On Light Straw Clay. In Proceedings of the 18th International Conference on Non-conventional Materials and Technologies, Online, June 7–23 2022. [Google Scholar] [CrossRef]
- Silva, G.; Ñañez, R.; Zavaleta, D.; Burgos, V.; Kim, S.; Ruiz, G.; Pando, M.A.; Aguilar, R.; Nakamatsu, J. Eco-Friendly Additive Construction: Analysis of the Printability of Earthen-Based Matrices Stabilized with Potato Starch Gel and Sisal Fibers. Constr. Build. Mater. 2022, 347, 128556. [Google Scholar] [CrossRef]
- D’Haese, R.; Carpentier, O.; Dubois, V.; Chafei, S.; Wirquin, E. 3D-Printable Materials Made with Industrial By-Products: Formulation, Fresh and Hardened Properties. Sustainability 2022, 14, 14236. [Google Scholar] [CrossRef]
- Rückrich, S.; Agranati, G.; Grobman, Y.J. Earth-Based Additive Manufacturing: A Field-Oriented Methodology for Evaluating Material Printability. Archit. Sci. Rev. 2023, 66, 133–143. [Google Scholar] [CrossRef]
- Rahal, S.; Kaci, A.; Skoudarli, A. Evaluation of Mechanical Anisotropy Induced by 3D Printing Process for Earth-Based Materials. Mater. Today Proc. 2023, S2214785323040622. [Google Scholar] [CrossRef]
- Faleschini, F.; Trento, D.; Masoomi, M.; Pellegrino, C.; Zanini, M.A. Sustainable Mixes for 3D Printing of Earth-Based Constructions. Constr. Build. Mater. 2023, 398, 132496. [Google Scholar] [CrossRef]
- Craveiro, F.; Duarte, J.P.; Bartolo, H.; Bartolo, P.J. Additive Manufacturing as an Enabling Technology for Digital Construction: A Perspective on Construction 4.0. Autom. Constr. 2019, 103, 251–267. [Google Scholar] [CrossRef]
- Alhumayani, H.; Gomaa, M.; Soebarto, V.; Jabi, W. Environmental Assessment of Large-Scale 3D Printing in Construction: A Comparative Study between Cob and Concrete. J. Clean. Prod. 2020, 270, 122463. [Google Scholar] [CrossRef]
- Fratello, V.S.; Rael, R. Innovating Materials for Large Scale Additive Manufacturing: Salt, Soil, Cement and Chardonnay. Cem. Concr. Res. 2020, 134, 106097. [Google Scholar] [CrossRef]
- Coutinho, B.G.; Polvi, F.; Bryson, Z. 152 Travessera de Gracia—Institute for Advanced Architecture of Catalonia. Available online: http://www.iaacblog.com/programs/152-travessera-de-gracia/ (accessed on 12 September 2023).
- Endres, E.; Mehnert, J.; Hildebrand, L.; Schweiker, M.; Roswag-Klinge, E.; Knaack, U. State of the Art and Potentials of Additive Manufactured Earth (AME). In Proceedings of the 9th PowerSKIN Conference, Munich, Germany, 9 April 2021; pp. 203–212. [Google Scholar]
- Schuldt, S.J.; Jagoda, J.A.; Hoisington, A.J.; Delorit, J.D. A Systematic Review and Analysis of the Viability of 3D-Printed Construction in Remote Environments. Autom. Constr. 2021, 125, 103642. [Google Scholar] [CrossRef]
- Schweiker, M.; Endres, E.; Gosslar, J.; Hack, N.; Hildebrand, L.; Creutz, M.; Klinge, A.; Kloft, H.; Knaack, U.; Mehnert, J.; et al. Ten Questions Concerning the Potential of Digital Production and New Technologies for Contemporary Earthen Constructions. Build. Environ. 2021, 206, 108240. [Google Scholar] [CrossRef]
- Teixeira, J.; Schaefer, C.O.; Rangel, B.; Maia, L.; Alves, J.L. A Road Map to Find in 3D Printing a New Design Plasticity for Construction—The State of Art. Front. Archit. Res. 2023, 12, 337–360. [Google Scholar] [CrossRef]
- Wolf, A.; Rosendahl, P.L.; Knaack, U. Additive Manufacturing of Clay and Ceramic Building Components. Autom. Constr. 2022, 133, 103956. [Google Scholar] [CrossRef]
- Leschok, M.; Cheibas, I.; Piccioni, V.; Seshadri, B.; Schlüter, A.; Gramazio, F.; Kohler, M.; Dillenburger, B. 3D Printing Facades: Design, Fabrication, and Assessment Methods. Autom. Constr. 2023, 152, 104918. [Google Scholar] [CrossRef]
- Binega Yemesegen, E.; Memari, A.M. A Review of Experimental Studies on Cob, Hempcrete, and Bamboo Components and the Call for Transition towards Sustainable Home Building with 3D Printing. Constr. Build. Mater. 2023, 399, 132603. [Google Scholar] [CrossRef]
- Reddi, L.N.; Jain, A.K.; Yun, H.-B. Soil Materials for Earth Construction: Properties, Classification and Suitability Testing. In Modern Earth Buildings; Elsevier: Amsterdam, The Netherlands, 2012; pp. 155–171. ISBN 978-0-85709-026-3. [Google Scholar]
- Medvey, B.; Dobszay, G. Durability of Stabilized Earthen Constructions: A Review. Geotech. Geol. Eng. 2020, 38, 2403–2425. [Google Scholar] [CrossRef]
- Eires, R.; Camões, A.; Jalali, S. Earth Architecture: Ancient and New Methods for Durability Improvement. In Structures and Architecture; Cruz, P.J., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 1002–1010. ISBN 978-0-429-15935-0. [Google Scholar]
- Losini, A.E.; Grillet, A.C.; Bellotto, M.; Woloszyn, M.; Dotelli, G. Natural Additives and Biopolymers for Raw Earth Construction Stabilization—A Review. Constr. Build. Mater. 2021, 304, 124507. [Google Scholar] [CrossRef]
- Eires, R.; Camões, A.; Jalali, S. Ancient Materials and Techniques to Improve the Earthen Building Durability. KEM 2015, 634, 357–366. [Google Scholar] [CrossRef]
- IAAC. Digital Adobe—IAAC Open Thesis Fabrication 2017–2018. Available online: https://www.youtube.com/watch?v=sTug99TUYcw&t=212s (accessed on 12 September 2023).
- Moeini, M.A.; Hosseinpoor, M.; Yahia, A. Effectiveness of the Rheometric Methods to Evaluate the Build-up of Cementitious Mortars Used for 3D Printing. Constr. Build. Mater. 2020, 257, 119551. [Google Scholar] [CrossRef]
- Buswell, R.A.; Leal de Silva, W.R.; Jones, S.Z.; Dirrenberger, J. 3D Printing Using Concrete Extrusion: A Roadmap for Research. Cem. Concr. Res. 2018, 112, 37–49. [Google Scholar] [CrossRef]
- Khelifi, H.; Perrot, A.; Lecompte, T.; Ausias, G. Design of Clay/Cement Mixtures for Extruded Building Products. Mater. Struct. 2013, 46, 999–1010. [Google Scholar] [CrossRef]
- Ouedraogo, K.A.J.; Aubert, J.-E.; Tribout, C.; Escadeillas, G. Is Stabilization of Earth Bricks Using Low Cement or Lime Contents Relevant? Constr. Build. Mater. 2020, 236, 117578. [Google Scholar] [CrossRef]
- Du, Y.; Brumaud, C.; Winnefeld, F.; Lai, Y.-H.; Habert, G. Mechanisms for Efficient Clay Dispersing Effect with Tannins and Sodium Hydroxide. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127589. [Google Scholar] [CrossRef]
- Du, Y.; Habert, G.; Brumaud, C. Influence of Tannin and Iron Ions on the Water Resistance of Clay Materials. Constr. Build. Mater. 2022, 323, 126571. [Google Scholar] [CrossRef]
- Vissac, A.; Bourgès, A.; Gandreau, D.; Anger, R.; Fontaine, L. Argiles & Biopolymères—Les Stabilisants Naturels Pour la Construction en Terre; CRAterre Éditions: Villefontaine, France, 2017; ISBN 978-2-906901-88-9. [Google Scholar]
- Sorgho, B.; Zerbo, L.; Keita, I.; Dembele, C.; Plea, M.; Sol, V.; Gomina, M.; Blanchart, P. Strength and Creep Behavior of Geomaterials for Building with Tannin Addition. Mater. Struct. 2014, 47, 937–946. [Google Scholar] [CrossRef]
- Keita, I.; Sorgho, B.; Dembele, C.; Plea, M.; Zerbo, L.; Guel, B.; Ouedraogo, R.; Gomina, M.; Blanchart, P. Ageing of Clay and Clay–Tannin Geomaterials for Building. Constr. Build. Mater. 2014, 61, 114–119. [Google Scholar] [CrossRef]
- Benzerara, M.; Guihéneuf, S.; Belouettar, R.; Perrot, A. Combined and Synergic Effect of Algerian Natural Fibres and Biopolymers on the Reinforcement of Extruded Raw Earth. Constr. Build. Mater. 2021, 289, 123211. [Google Scholar] [CrossRef]
- Wangler, T.; Roussel, N.; Bos, F.P.; Salet, T.A.M.; Flatt, R.J. Digital Concrete: A Review. Cem. Concr. Res. 2019, 123, 105780. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Nerella, V.N.; Kasten, K. Testing Pumpability of Concrete Using Sliding Pipe Rheometer. Constr. Build. Mater. 2014, 53, 312–323. [Google Scholar] [CrossRef]
- WASP. Clay 3D Printer, Delta WASP 2040. Available online: https://www.3dwasp.com/en/clay-3d-printer-delta-wasp-2040-clay/ (accessed on 12 September 2023).
- 3DPotter 3D Potterbot. Available online: https://3dpotter.com (accessed on 12 September 2023).
- StoneFlower. Clay 3D Printer. Available online: https://www.stoneflower3d.com/store/3d-printer-stoneflower/ (accessed on 12 September 2023).
- Cerambot. CERAMBOT, Ceramic Printer. Available online: https://www.cerambot.com (accessed on 12 September 2023).
- M-Tec. Building 4.0: Duo-Mix Connect. Available online: https://m-tec.com/construction-site-equipment/machines/mixing-pumps/duo-mix-connect/ (accessed on 12 September 2023).
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Gibb, A.G.F.; Thorpe, T. Mix Design and Fresh Properties for High-Performance Printing Concrete. Mater. Struct. 2012, 45, 1221–1232. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Bos, F.P.; Perrot, A.; da Silva, W.R.L.; Nerella, V.N.; Fataei, S.; Wolfs, R.J.M.; Sonebi, M.; Roussel, N. Extrusion-Based Additive Manufacturing with Cement-Based Materials—Production Steps, Processes, and Their Underlying Physics: A Review. Cem. Concr. Res. 2020, 132, 106037. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Nerella, V.N.; Will, F.; Näther, M.; Otto, J.; Krause, M. Large-Scale Digital Concrete Construction—CONPrint3D Concept for on-Site, Monolithic 3D-Printing. Autom. Constr. 2019, 107, 102933. [Google Scholar] [CrossRef]
- Khoshnevis, B. Automated Construction by Contour Crafting—Related Robotics and Information Technologies. Autom. Constr. 2004, 13, 5–19. [Google Scholar] [CrossRef]
- Lim, S.; Buswell, R.A.; Le, T.T.; Austin, S.A.; Gibb, A.G.F.; Thorpe, T. Developments in Construction-Scale Additive Manufacturing Processes. Autom. Constr. 2012, 21, 262–268. [Google Scholar] [CrossRef]
- Lim, S.; Buswell, R.; Le, T.; Wackrow, R.; Austin, S.; Gibb, A.; Thorpe, T. Development of a Viable Concrete Printing Process. In Proceedings of the 28th International Symposium on Automation and Robotics in Construction, Seoul, Republic of Korea, 29 June 2011; pp. 665–667. [Google Scholar] [CrossRef]
- Khoshnevis, B.; Bukkapatnam, S.; Kwon, H.; Saito, J. Experimental Investigation of Contour Crafting Using Ceramics Materials. Rapid Prototyp. J. 2001, 7, 32–42. [Google Scholar] [CrossRef]
- Hojati, M.; Li, Z.; Memari, A.M.; Park, K.; Zahabi, M.; Nazarian, S.; Duarte, J.P.; Radlińska, A. 3D-Printable Quaternary Cementitious Materials towards Sustainable Development: Mixture Design and Mechanical Properties. Results Eng. 2022, 13, 100341. [Google Scholar] [CrossRef]
- Bos, F.; Wolfs, R.; Ahmed, Z.; Salet, T. Additive Manufacturing of Concrete in Construction: Potentials and Challenges of 3D Concrete Printing. Virtual Phys. Prototyp. 2016, 11, 209–225. [Google Scholar] [CrossRef]
- Rehman, A.U.; Kim, J.-H. 3D Concrete Printing: A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics. Materials 2021, 14, 3800. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Le, T.; Webster, J.; Buswell, R.; Austin, S.; Gibb, A.; Thorpe, T. Fabricating Construction Components Using Layered Manufacturing Technology. In Proceedings of the Global Innovation in Construction Conference, Loughborough, UK, 13–16 September 2009; Available online: https://oro.open.ac.uk/37889/ (accessed on 12 September 2023).
- Kruger, J.; Zeranka, S.; van Zijl, G. 3D Concrete Printing: A Lower Bound Analytical Model for Buildability Performance Quantification. Autom. Constr. 2019, 106, 102904. [Google Scholar] [CrossRef]
- Arunothayan, A.R.; Nematollahi, B.; Ranade, R.; Khayat, K.H.; Sanjayan, J.G. Digital Fabrication of Eco-Friendly Ultra-High Performance Fiber-Reinforced Concrete. Cem. Concr. Compos. 2022, 125, 104281. [Google Scholar] [CrossRef]
- Bos, F.P.; Kruger, P.J.; Lucas, S.S.; van Zijl, G.P.A.G. Juxtaposing Fresh Material Characterisation Methods for Buildability Assessment of 3D Printable Cementitious Mortars. Cem. Concr. Compos. 2021, 120, 104024. [Google Scholar] [CrossRef]
- Kazemian, A.; Yuan, X.; Cochran, E.; Khoshnevis, B. Cementitious Materials for Construction-Scale 3D Printing: Laboratory Testing of Fresh Printing Mixture. Constr. Build. Mater. 2017, 145, 639–647. [Google Scholar] [CrossRef]
- Roussel, N. A Thixotropy Model for Fresh Fluid Concretes: Theory, Validation and Applications. Cem. Concr. Res. 2006, 36, 1797–1806. [Google Scholar] [CrossRef]
- Chen, Y.; Chaves Figueiredo, S.; Li, Z.; Chang, Z.; Jansen, K.; Çopuroğlu, O.; Schlangen, E. Improving Printability of Limestone-Calcined Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture. Cem. Concr. Res. 2020, 132, 106040. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Correlation between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early Age 3D Printed Concrete. Constr. Build. Mater. 2018, 181, 447–454. [Google Scholar] [CrossRef]
- Figueiredo, B.; Cruz, P.J.S.; Carvalho, J.; Moreira, J. Challenges of 3d Printed Architectural Ceramic Components Structures: Controlling the Shrinkage and Preventing the Cracking. In Proceedings of the IASS Annual Symposium 2019—Structural Membranes 2019, Barcelona, Spain, 7–10 October 2019. [Google Scholar]
- Nicolas, R.; Richard, B.; Nicolas, D.; Irina, I.; Temitope, K.J.; Dirk, L.; Viktor, M.; Romain, M.; Arnaud, P.; Ursula, P.; et al. Assessing the Fresh Properties of Printable Cement-Based Materials: High Potential Tests for Quality Control. Cem. Concr. Res. 2022, 158, 106836. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Hardened Properties of 3D Printed Concrete: The Influence of Process Parameters on Interlayer Adhesion. Cem. Concr. Res. 2019, 119, 132–140. [Google Scholar] [CrossRef]
- Quagliarini, E.; Stazi, A.; Pasqualini, E.; Fratalocchi, E. Cob Construction in Italy: Some Lessons from the Past. Sustainability 2010, 2, 3291–3308. [Google Scholar] [CrossRef]
- Lima, J.; Faria, P.; Santos Silva, A. Earth Plasters: The Influence of Clay Mineralogy in the Plasters’ Properties. Int. J. Archit. Herit. 2020, 14, 948–963. [Google Scholar] [CrossRef]
- Fabbri, A.; Aubert, J.-E.; Bras, A.A.; Faria, P.; Gallipoli, D.; Goffart, J.; McGregor, F.; Perlot-Bascoules, C.; Soudani, L. Hygrothermal and Acoustic Assessment of Earthen Materials. In Testing and Characterisation of Earth-based Building Materials and Elements; Fabbri, A., Morel, J.-C., Aubert, J.-E., Bui, Q.-B., Gallipoli, D., Reddy, B.V.V., Eds.; RILEM State-of-the-Art Reports; Springer International Publishing: Cham, Switzerland, 2022; Volume 35, pp. 83–126. ISBN 978-3-030-83296-4. [Google Scholar]
- Arris-Roucan, S.; McGregor, F.; Fabbri, A.; Perlot, C. Towards the Determination of Carbon Dioxide Retention in Earthen Materials. Build. Environ. 2023, 239, 110415. [Google Scholar] [CrossRef]
- Ranesi, A.; Faria, P.; Veiga, R.; Gall, E.T. Eco-Efficient Coatings for Healthy Indoors: Ozone Deposition Velocities, Primary and Secondary Emissions. SSRN. 2023; preprint article. [Google Scholar] [CrossRef]
- Santos, T.; Almeida, J.; Silvestre, J.D.; Faria, P. Life Cycle Assessment of Mortars: A Review on Technical Potential and Drawbacks. Constr. Build. Mater. 2021, 288, 123069. [Google Scholar] [CrossRef]
- Dey, D.; Srinivas, D.; Panda, B.; Suraneni, P.; Sitharam, T.G. Use of Industrial Waste Materials for 3D Printing of Sustainable Concrete: A Review. J. Clean. Prod. 2022, 340, 130749. [Google Scholar] [CrossRef]
- Panda, B.; Ruan, S.; Unluer, C.; Tan, M.J. Improving the 3D Printability of High Volume Fly Ash Mixtures via the Use of Nano Attapulgite Clay. Compos. Part B Eng. 2019, 165, 75–83. [Google Scholar] [CrossRef]
- Nerella, V.N.; Näther, M.; Iqbal, A.; Butler, M.; Mechtcherine, V. Inline Quantification of Extrudability of Cementitious Materials for Digital Construction. Cem. Concr. Compos. 2019, 95, 260–270. [Google Scholar] [CrossRef]
- Chen, Y.; Chaves Figueiredo, S.; Yalçinkaya, Ç.; Çopuroğlu, O.; Veer, F.; Schlangen, E. The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing. Materials 2019, 12, 1374. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, C.; Wu, Y.; Bai, G.; He, C.; Yao, Y.; Zhang, R.; Wang, Y. 3D Printing Concrete with Recycled Coarse Aggregates: The Influence of Pore Structure on Interlayer Adhesion. Cem. Concr. Compos. 2022, 134, 104742. [Google Scholar] [CrossRef]
- Jagoda, J.; Diggs-McGee, B.; Kreiger, M.; Schuldt, S. The Viability and Simplicity of 3D-Printed Construction: A Military Case Study. Infrastructures 2020, 5, 35. [Google Scholar] [CrossRef]
- Mohammad, M.; Masad, E.; Al-Ghamdi, S.G. 3D Concrete Printing Sustainability: A Comparative Life Cycle Assessment of Four Construction Method Scenarios. Buildings 2020, 10, 245. [Google Scholar] [CrossRef]
- Yang, H.; Chung, J.K.H.; Chen, Y.; Li, Y. The Cost Calculation Method of Construction 3D Printing Aligned with Internet of Things. J. Wirel. Commun. Netw. 2018, 2018, 147. [Google Scholar] [CrossRef]
- Simonson, C.J.; Salonvaara, M.; Ojanen, T. Improving Indoor Climate and Comfort with Wooden Structures; VTT Publications; Technical Research Centre of Finland: Espoo, Finland, 2001; ISBN 978-951-38-5846-9. [Google Scholar]
- Mujan, I.; Anđelković, A.S.; Munćan, V.; Kljajić, M.; Ružić, D. Influence of Indoor Environmental Quality on Human Health and Productivity—A Review. J. Clean. Prod. 2019, 217, 646–657. [Google Scholar] [CrossRef]
- Tayefi, L. Optimizing Geometry via Design to Enhance Its Effect on Passive Ventilation Systems When 3D Printing Unfired Clay. Available online: https://www.iaacblog.com/2017/04/21/3d-printing-optimized-passive-ventilation-systems/ (accessed on 12 September 2023).
- POTplus. Common Action Walls. Available online: http://potplus.org/common-action-walls/ (accessed on 12 September 2023).
- Fratello, V.S.; Rael, R. Cool Brick—Emerging Objects. Available online: https://emergingobjects.com/project/cool-brick/ (accessed on 12 September 2023).
- Simonson, C.J.; Salonvaara, M.; Ojanen, T. The Effect of Structures on Indoor Humidity—Possibility to Improve Comfort and Perceived Air Quality: Effect of Structures on Indoor Humidity. Indoor Air 2002, 12, 243–251. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, M.; Rode, C.; Chen, Z. Moisture Buffering Phenomenon and Its Impact on Building Energy Consumption. Appl. Therm. Eng. 2017, 124, 337–345. [Google Scholar] [CrossRef]
- Medjelekh, D.; Ulmet, L.; Abdou, S.; Dubois, F. A Field Study of Thermal and Hygric Inertia and Its Effects on Indoor Thermal Comfort: Characterization of Travertine Stone Envelope. Build. Environ. 2016, 106, 57–77. [Google Scholar] [CrossRef]
- Dubois, S.; McGregor, F.; Evrard, A.; Heath, A.; Lebeau, F. An Inverse Modelling Approach to Estimate the Hygric Parameters of Clay-Based Masonry during a Moisture Buffer Value Test. Build. Environ. 2014, 81, 192–203. [Google Scholar] [CrossRef]
- Ranesi, A.; Faria, P.; Veiga, M.D.R. Traditional and Modern Plasters for Built Heritage: Suitability and Contribution for Passive Relative Humidity Regulation. Heritage 2021, 4, 2337–2355. [Google Scholar] [CrossRef]
- ELstudio. Print&Burn 3D Printing with Clay & More. Available online: https://www.elstudio.nl/?p=1784 (accessed on 12 September 2023).
- Fratello, V.S.; Rael, R. Involute Wall—Emerging Objects. Available online: https://emergingobjects.com/project/involute-wall/ (accessed on 12 September 2023).
- Atkinson, C.D.; Aslani, F. Performance of 3D Printed Columns Using Self-Sensing Cementitious Composites. Constr. Build. Mater. 2023, 375, 130961. [Google Scholar] [CrossRef]
- Wang, L.; Aslani, F.; Mukherjee, A. Development of 3D Printable Self-Sensing Cementitious Composites. Constr. Build. Mater. 2022, 337, 127601. [Google Scholar] [CrossRef]
- Wang, L.; Aslani, F. Structural Performance of Reinforced Concrete Beams with 3D Printed Cement-Based Sensor Embedded and Self-Sensing Cementitious Composites. Eng. Struct. 2023, 275, 115266. [Google Scholar] [CrossRef]
- Birgin, H.B.; D’Alessandro, A.; Meoni, A.; Ubertini, F. Self-Sensing Eco-Earth Composite with Carbon Microfibers for Sustainable Smart Buildings. J. Compos. Sci. 2023, 7, 63. [Google Scholar] [CrossRef]
- Birgin, H.B.; D’Alessandro, A.; Ubertini, F. A New Smart Sustainable Earth-Cement Composite Doped by Carbon Microfibers with Self-Sensing Properties. Dev. Built Environ. 2023, 14, 100168. [Google Scholar] [CrossRef]
- Wang, L.; Aslani, F. Development of Self-Sensing Cementitious Composites Incorporating CNF and Hybrid CNF/CF. Constr. Build. Mater. 2021, 273, 121659. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Aza, C.A. Self Sensing Carbon Nanotube (CNT) and Nanofiber (CNF) Cementitious Composites for Real Time Damage Assessment in Smart Structures. Cem. Concr. Compos. 2014, 53, 162–169. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; You, I.; Youn, H.; Lee, S.-J. Electrical and Piezoresistive Properties of Cement Composites with Carbon Nanomaterials. J. Compos. Mater. 2018, 52, 3325–3340. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Zhu, X.; Sheng, D.; Shah, S.P. Multifunctional Cementitious Composites with Integrated Self-Sensing and Hydrophobic Capacities toward Smart Structural Health Monitoring. Cem. Concr. Compos. 2021, 118, 103962. [Google Scholar] [CrossRef]
Reference | Explored Aspects * | Source ** | Location | Group/ Company *** | Material **** | Type of Clay | Fibers | Additions ***** |
---|---|---|---|---|---|---|---|---|
[36] | 1 | a | Morocco | WASP | LE | - | - | Unspecified type |
[17] | 1 | c | Switzerland | ETH | LC | - | Cellulose, wood chips | Lime (unspecified type) |
[37] | 1 | a | Spain | IAAC | LE | - | - | Bio additives |
[27] | 5 | a | Italy | WASP | LE | - | Straw fibers | CL, HL |
[38] | 1, 3 | d | UK | Cardiff | LE, P, BC | Kaolin/ball clay | Straw fibers | Unspecified type |
[39] | 1 | b | Spain | IAAC | LE | - | - | Bio additives |
[40] | 1, 2 | b | Cyprus | UCY | P | - | - | Unspecified type |
[41] | 1, 3, 4 | b | Spain | IAAC | LE | - | Fibers (unspecified type) | Bio additives |
[42] | 1, 2, 3 | a | Spain | IAAC | C | - | - | Bio additives |
[28] | 1, 2, 3, 5 | a | Italy | WASP | LE | - | Straw fibers | CL, HL |
[43] | 1, 2 | c | UK | P., A., C. | LE, P, BC | Kaolin/ball clay | Straw fibers | - |
[44] | 1, 2 | b | France | Bretagne Sud | LE | Kaolinite, illite, smectite | - | SA |
[45] | 1, 3 | c | France | LGCgE | E | Kaolinite, illite | Short fibers, flax shives | OCP |
[46] | 1, 5 | c | Spain | IAAC | E | - | - | Bio additives |
Reference | Explored Aspects * | Source ** | Location | Group/ Company *** | Material **** | Type of Clay | Fibers | Additions ***** |
[47] | 1, 2 | c | France | INSA Rennes | KB; RB; SB | Kaolin, illite, chorite, smectite | SB: flax fibers and woven flax fiber fabric | SHMP |
[48] | 1, 2 | a | The Netherlands | 4TU | E | - | Straw, jute, and hay | - |
[49] | 1, 2 | a | Spain | IAAC/WASP | LE | - | Straw fibers | CL, HL |
[32] | 5 | a | USA | EO | - | - | - | - |
[50] | 1 | b | UK | P., A., C. | LE, P, BC | Kaolin/ball clay | Straw fibers | - |
[51] | 1, 3 | b | UK | P., A., C. | LE | - | Straw fibers | - |
[52] | 1, 2 | b | Cyprus | UCY | E | - | Straw fibers | - |
[53] | 1, 2 | b | Cyprus | UCY | P; LC; LE | Kaolin | Straw fibers | NaCl, SHMP |
[54] | 5 | a | USA | EO | - | - | - | - |
[55] | 1 | b | UK | P., A., C. | LE | - | Straw fibers | - |
[56] | 2 | b | UK | P., A., C. | LE | - | Straw fibers | - |
[29] | 1, 5 | a | Italy | WASP | LE | - | Rice husk | - |
[30] | 5 | a | Germany | WASP | LE | - | Rice husk and straw | - |
[33] | 5 | d | USA | EO | - | - | - | - |
[57] | 1, 2 | b | Italy | WASP | LE | Calcareous loam | Rice husk, polypropylene | CL, HL |
[31] | 5 | d | Dubai | WASP | - | - | Fibers (unspecified type) | - |
[18] | 1, 2, 5 | a | Switzerland | ETH | C | - | - | - |
[58] | 1, 2 | b | Italy | WASP | LE | Calcareous loam | Rice husk, polypropylene | CL, HL |
[59] | 1, 2 | b | USA | Park | C | - | Straw fibers | HL |
[60] | 1, 2 | c | USA | Columbia | LE | Kaolinite and illite | Straw fibers | SA, MC |
[61] | 1, 2 | b | Peru | PUCP | LE | Kaolinite and illite | Straw fibers | Potato starch |
[62] | 1, 3 | b | France | LGCgE | E | Kaolinite, illite | - | OCP, CSAC, FA, CAM |
[63] | 1, 2 | b | Israel | IIT | CC | Kaolinite | Hemp shiv; cellulose; horse manure | - |
[26] | 1, 2 | b | France | IMT | LE | Kaolinite and illite | - | OCP, MP; SP; PCE |
[64] | 1, 2 | b | France | L2MGC | LE | - | Flax fibers | - |
[65] | 1, 2, 4 | b | Italy | UP | LE | - | Rice husk; jute, coconut; sisal fibers; goat hair | OCP; HL; municipal solid waste bottom ash |
Reference | Explored Aspects * | Source ** | Location | Group/Company *** |
---|---|---|---|---|
[66] | 5 | b | Portugal | CIAUD |
[67] | 4 | b | UK | C., A., T. |
[68] | 5 | b | USA | EO |
[69] | 1, 2 | a | Spain | IAAC |
[70] | 3, 4 | c | Germany | TUDelft |
[71] | 3, 4 | c | USA | AFIT |
[72] | 1, 2, 3, 4 | b | Germany | Collaborations |
[73] | 1, 2 | b | Portugal | FEUP |
[74] | 1, 2 | b | Germany | TU Darmstadt |
[35] | 1, 2, 3, 4 | b | USA | RMIT, C., A. |
[75] | 1, 2 | b | Switzerland | ETH |
[76] | 1, 2 | b | USA | Penn State |
Reference | Year | XRD/XRF * | Rheology ** | Fresh Properties | Hardened Properties | Pump System |
---|---|---|---|---|---|---|
[36] | 2014 | - | - | Printability | Test not described | Screw pump |
[17] | 2014 | - | - | Buildability | Test not described | Remote deposition |
[37] | 2015 | - | - | Printability | Test not described | Piston pump |
[27] | 2016 | - | - | Printability | Test not described | Screw pump |
[38] | 2017 | - | - | Printability | - | Piston pump |
[39] | 2017 | - | - | Printability | Test not described | Piston pump |
[40] | 2018 | - | - | Printability | - | Piston pump + screw pump |
[41] | 2018 | - | - | Printability | 3-point flexural test | Piston pump |
[42] | 2018 | - | - | Printability | 3-point flexural test | Piston pump |
[28] | 2018 | - | - | Printability | - | Screw pump |
[43] | 2018 | - | - | Printability | - | Piston pump |
[44] | 2018 | XRD | RR | Yield stress, fresh strength, visual voids layer section, printability | Uniaxial compression test | Screw pump |
[45] | 2018 | - | - | Penetration, Vicat needle, printability | Uniaxial compression test, shrinkage | Screw pump |
[46] | 2019 | - | - | Printability | Test not described | Piston pump |
[47] | 2019 | XRD | - | Extrusion | Uniaxial compression test, dry density | Screw pump |
[48] | 2019 | - | - | Printability | - | Screw pump |
[49] | 2019 | - | - | Printability | - | Screw pump |
[32] | 2019 | - | - | Printability | - | Screw pump |
[50] | 2019 | - | - | Printability | Tensile and compressive strength simulation, shrinkage | Piston pump |
[51] | 2019 | - | - | Printability | Thermal conductivity tests | Piston pump |
[52] | 2020 | - | - | Printability | - | Piston pump + screw pump |
[53] | 2020 | - | - | Printability | - | Piston pump + screw pump Piston pump |
[54] | 2020 | - | - | Printability | Test not described | Screw pump |
[55] | 2021 | - | - | Pumpability, extrudability, buildability, inclined printing | Test not described | Piston pump |
[56] | 2021 | - | - | Printability | Uniaxial compression test, shrinkage | Piston pump |
[29] | 2021 | - | - | Printability | Test not described | Screw pump |
[30] | 2021 | - | - | Printability | Test not described | Screw pump |
[33] | 2021 | - | - | Printability | - | - |
[57] | 2021 | - | RP | yes, not described | Uniaxial compression test | none |
[31] | 2021 | - | - | Printability | Test not described | Screw pump |
[18] | 2021 | - | - | Buildability | Uniaxial compressive strength, shrinkage | Smash |
[58] | 2022 | - | - | Printability | Uniaxial compression test, shrinkage | Screw pump |
[59] | 2022 | - | - | Plasticity test, printability | Uniaxial compression test, flexural strength test, splitting tensile test | Piston pump |
Reference | Year | XRD/XRF * | Rheology ** | Fresh Properties | Hardened Properties | Pump System |
[60] | 2022 | XRD | - | Pumpability, extrudability, buildability | Uniaxial compression test, three-point flexural test | Piston pump |
[61] | 2022 | XRF | SVT | Extrusion, buildability, Vicat needle, fresh strength | Uniaxial compression test, shrinkage, capillarity absorption test | Screw pump |
[62] | 2022 | XRF | - | Penetrometer, Vicat needle, printability | Uniaxial compression test, shrinkage | Screw pump |
[63] | 2023 | - | - | Material flow, extrudability, buildability | - | Piston pump |
[26] | 2023 | XRF | - | Mini slump, mini fresh strength, flow table, Vicat needle, extrudability, printability | Uniaxial compression test, mercury intrusion porosity | Piston pump + screw pump |
[64] | 2023 | - | - | Mini slump test, printability | Uniaxial compression test, three-point flexural test, apparent shear test | Not mentioned |
[65] | 2023 | XRD | - | Printability | Uniaxial compression test, three-point flexural test, shrinkage | Piston pump + screw pump |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, D.; Faria, P.; Lucas, S.S. Additive Manufacturing of Earth-Based Materials: A Literature Review on Mortar Composition, Extrusion, and Processing Earth. Materials 2024, 17, 202. https://doi.org/10.3390/ma17010202
Rocha D, Faria P, Lucas SS. Additive Manufacturing of Earth-Based Materials: A Literature Review on Mortar Composition, Extrusion, and Processing Earth. Materials. 2024; 17(1):202. https://doi.org/10.3390/ma17010202
Chicago/Turabian StyleRocha, Douglas, Paulina Faria, and Sandra S. Lucas. 2024. "Additive Manufacturing of Earth-Based Materials: A Literature Review on Mortar Composition, Extrusion, and Processing Earth" Materials 17, no. 1: 202. https://doi.org/10.3390/ma17010202
APA StyleRocha, D., Faria, P., & Lucas, S. S. (2024). Additive Manufacturing of Earth-Based Materials: A Literature Review on Mortar Composition, Extrusion, and Processing Earth. Materials, 17(1), 202. https://doi.org/10.3390/ma17010202