Heterogeneous Multi-Phase Grains Improving the Strength-Ductility Balance in Warm-Rolled Fe-18Mn-3Ti Steel
Abstract
:1. Introduction
2. Experiment Procedure
3. Results and Discussion
3.1. Mechanical Properties
3.2. Thermal Properties
3.3. Microstructure Analysis
4. Conclusions
- (1)
- After the warm rolling process, the Fe-18Mn-3Ti steel achieves the strength and ductility balance with the ultimate tensile strength of 1052 MPa and a total elongation of 15.49%. In addition, the strain-hardening ability is significantly improved.
- (2)
- The 450 AQ1 sample has higher austenite transformation temperature (Ac1: 580 °C, Ac3: 630 °C) than the 450 WR (Ac1: 503 °C, Ac3: 595 °C) and CR (Ac1: 506 °C, Ac3: 612 °C) samples. Besides, the ε-martensite is induced by strain and has low thermal stability, which leads to a two-stage phase transformation in the annealing process.
- (3)
- The 450 WR sample consists of heterogeneous (containing lamellar and granular) austenite, granular α-martensite, and granular ε-martensite. The martensite transformation in the warm rolling process increases the yield strength. The heterogeneous microstructure leads to grain co-deformation and improves elongation. Besides, the high grain disorientation in the 450 WR sample enhances the strain-hardening ability.
- (4)
- The persistent TRIP effect plays an important role in improving the mechanical properties. During stage Ⅰ of the tensile test, the lamellar austenite grains refine gradually and transform into elongated α-martensite grains. The grain refinement effect and the formation of strain-induced α-martensite improve the strain-hardening ability and ultimate tensile strength. During the stage Ⅱ of the tensile test, the γ→ε and ε→α collaborative transformation improves the elongation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacob, R.; Sankaranarayanan, S.R.; Baidu, S.P.K. Recent Advancements in Manganese Steels—A Review. Mater. Today Proc. 2020, 27, 2852–2858. [Google Scholar] [CrossRef]
- Park, G.; Jeong, S.; Lee, C. Fusion Weldabilities of Advanced High Manganese Steels: A Review. Met. Mater. Int. 2021, 27, 2046–2058. [Google Scholar] [CrossRef]
- Bleck, W. New Insights into the Properties of High-Manganese Steel. Int. J. Miner. Metall. Mater. 2021, 28, 782–796. [Google Scholar] [CrossRef]
- Kwiatkowski da Silva, A.; Souza Filho, I.R.; Lu, W.; Zilnyk, K.D.; Hupalo, M.F.; Alves, L.M.; Ponge, D.; Gault, B.; Raabe, D. A Sustainable Ultra-High Strength Fe18Mn3Ti Maraging Steel Through Controlled Solute Segregation and A-Mn Nanoprecipitation. Nat. Commun. 2022, 13, 2330. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Ding, H.; Zhang, Y.; Tang, Z. Microstructural evolution and strain hardening behavior of a novel two-stage warm rolled ultra-high strength medium Mn steel with heterogeneous structures. Int. J. Plast. 2022, 151, 103212. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.Y.; Meng, Q.W.; Wang, L.Y.; Li, Y.Z.; Xu, W. Tailoring retained austenite and mechanical property improvement in Al–Si–V containing medium Mn steel via direct intercritical rolling. Mater. Sci. Eng. A 2022, 855, 143904. [Google Scholar] [CrossRef]
- Knowles, A.J.; Gong, P.; Rahman, K.M.; Rainforth, W.M.; Dye, D.; Galindo-Nava, E.I. Development of Ni-free Mn-stabilised maraging steels using Fe2SiTi precipitates. Acta Mater. 2019, 174, 260–270. [Google Scholar] [CrossRef]
- Bai, Y.; Momotani, Y.; Chen, M.C.; Shibata, A.; Tsuji, N. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel. Mater. Sci. Eng. A 2016, 651, 935–944. [Google Scholar] [CrossRef]
- Koyama, M.; Lee, T.; Lee, C.S.; Tsuzaki, K. Grain refinement effect on cryogenic tensile ductility in a Fe-Mn-C twinning-induced plasticity steel. Mater. Des. 2013, 49, 234–241. [Google Scholar] [CrossRef]
- Razavi, G.R.; Rizi, M.S.; Zadeh, H.M. Effect of a Mo addition on the properties of high-Mn steel. Mater. Technol. 2013, 47, 611. [Google Scholar]
- Cao, J.; Zhao, A.; Liu, J.; He, J.; Ding, R. Effect of Nb on microstructure and mechanical properties in non-magnetic high manganese steel. J. Iron Steel Res. Int. 2014, 21, 600–605. [Google Scholar] [CrossRef]
- Ren, J.; Chen, Q.; Chen, J.; Liu, Z. Role of vanadium additions on tensile and cryogenic-temperature charpy impact properties in hot-rolled high-Mn austenitic steels. Mater. Sci. Eng. A 2021, 811, 141063. [Google Scholar] [CrossRef]
- Han, Y.; Shi, J.; Xu, L.; Cao, W.Q.; Dong, H. TiC precipitation induced effect on microstructure and mechanical properties in low carbon medium manganese steel. Mater. Sci. Eng. A 2011, 530, 643–651. [Google Scholar] [CrossRef]
- Hu, J.; Du, L.X.; Dong, Y.; Meng, Q.W.; Misra, R.D.K. Effect of Ti variation on microstructure evolution and mechanical properties of low carbon medium Mn heavy plate steel. Mater. Charact. 2019, 152, 21–35. [Google Scholar] [CrossRef]
- Zhi, H.; Li, J.; Li, W.; Elkot, M.; Antonov, S.; Zhang, H.; Lai, M. Simultaneously enhancing strength-ductility synergy and strain hardenability via Si-alloying in medium-Al FeMnAlC lightweight steels. Acta Mater. 2023, 245, 118611. [Google Scholar] [CrossRef]
- Gao, B.; Chen, X.; Pan, Z.; Li, J.; Ma, Y.; Cao, Y.; Liu, M.; Lai, Q.; Xiao, L.; Zhou, H. A high-strength heterogeneous structural dual-phase steel. J. Mater. Sci. 2019, 54, 12898–12910. [Google Scholar] [CrossRef]
- Huang, J.X.; Liu, Y.; Xu, T.; Chen, X.F.; Lai, Q.Q.; Xiao, L.R.; Pan, Z.Y.; Gao, B.; Zhou, H.; Zhu, Y.T. Dual-phase hetero-structured strategy to improve ductility of a low carbon martensitic steel. Mater. Sci. Eng. A 2022, 834, 142584. [Google Scholar] [CrossRef]
- Cai, Z.; Ding, H.; Ying, Z.; Misra, R.D.K. Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2 C steel. J. Mater. Eng. Perform. 2014, 23, 1131–1137. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, R.; Wang, Y.; Cai, C.; Wang, H.; Wang, K. C-modified stacking-fault networks inducing the excellent strength- plasticity combinations of medium manganese steel by simple two-stage warm rolling without annealing. Scr. Mater. 2023, 229, 115372. [Google Scholar] [CrossRef]
- PandatTM. Thermodynamic Calculations and Kinetic Simulations; CompuTherm LLC: Middleton, WI, USA, 2022. [Google Scholar]
- Xu, J.; Xia, Y.; Li, Z.; Chen, H.; Wang, X.; Sun, Z.; Yin, W. Multi-physics instrument: Total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source. Nucl. Inst. Methods Phys. Res. A 2021, 1013, 165642. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Moon, J.; Jo, H.H.; Park, S.J.; Kim, S.D.; Lee, T.H.; Lee, C.H.; Lee, M.G.; Hong, H.U.; Suh, D.W.; Raabe, D. Ti-bearing lightweight steel with large high temperature ductility via thermally stable multi-phase microstructure. Mater. Sci. Eng. A 2021, 808, 140954. [Google Scholar] [CrossRef]
- da Silva, A.K.; Leyson, G.; Kuzmina, M.; Ponge, D.; Herbig, M.; Sandlöbes, S.; Gault, B.; Neugebauer, J.; Raabe, D. Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: A correlative TEM-atom probe study combined with multiscale modelling. Acta Mater. 2017, 124, 305–315. [Google Scholar] [CrossRef]
- Jiang, S.; Yu, W.; Xing, X.; Zhang, Y. Stress-induced martensite phase transformation of FeMnSiCrNi shape memory alloy subjected to mechanical vibrating polishing. Trans. Nonferrous Met. Soc. China. 2020, 30, 1582–1593. [Google Scholar] [CrossRef]
- Yan, N.; Geng, D.; Wei, B. Damping performance and martensitic transformation of rapidly solidified Fe-17% Mn alloy. J. Mater. Sci. Technol. 2022, 117, 1–7. [Google Scholar] [CrossRef]
- Kim, J.S.; Jeon, J.B.; Jung, J.E.; Um, K.K.; Chang, Y.W. Effect of deformation induced transformation of ɛ-martensite on ductility enhancement in a Fe-12 Mn steel at cryogenic temperatures. Met. Mater. Int. 2014, 20, 41–47. [Google Scholar] [CrossRef]
- Hall, E.O. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 1951, 64, 747. [Google Scholar] [CrossRef]
- Zhang, X.; Teng, R.; Liu, T.; Shi, Y.; Lv, Z.; Zhou, Q.; Wang, X.; Wang, Y.; Liu, H.; Xing, Z. Improving strength-ductility synergy in medium Mn steel by combining heterogeneous structure and TRIP effect. Mater. Charact. 2022, 184, 111661. [Google Scholar] [CrossRef]
- Yang, M.X.; Yuan, F.P.; Xie, Q.G.; Wang, Y.D.; Ma, E.; Wu, X.L. Strain hardening in Fe-16Mn-10Al-0.86 C-5Ni high specific strength steel. Acta Mater. 2016, 109, 213–222. [Google Scholar] [CrossRef]
- Yu, S.; Du, L.X.; Hu, J.; Misra, R.D.K. Effect of hot rolling temperature on the microstructure and mechanical properties of ultra-low carbon medium manganese steel. Mater. Sci. Eng. A 2018, 731, 149–155. [Google Scholar] [CrossRef]
- Chen, M.; Deng, W.; Wang, M.M.; Li, J.; Xing, S. Discontinuous yielding with remarkable Lüders deformation in a duplex stainless steel during tensile deformation at 77 K. Mater. Sci. Eng. A 2023, 875, 145095. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Zhao, Y.; Misra, R.D.K. Influence of manganese content on ε-/α′-martensitic transformation and tensile properties of low-C high-Mn TRIP steels. Mater. Des. 2018, 142, 190–202. [Google Scholar] [CrossRef]
Composition (wt%) | Fe | Mn | Ti | Ni | Al | C |
---|---|---|---|---|---|---|
theory | Balance | 18 | 3 | |||
ICP | Balance | 17.75 | 2.63 | 0.0068 | 0.0068 | |
XRF | Balance | 17.39 | 2.49 | 0.009 | 0.012 | 0.006 |
Samples | UTS /MPa | TEL /% | UTS × TEL /GPa% |
---|---|---|---|
450 WR (this work) | 1052 | 15.49 | 16.30 |
Fe-18Mn-3Ti [4] | 1767 | 8.36 | 14.78 |
Ti-LWS [23] | 767 | 9.97 | 7.65 |
Fe-9Mn [24] | 821 | 6.76 | 5.55 |
Fe-0.51Mn-0.82Cr-0.61Ti-0.61Ni [25] | 1484 | 9.90 | 14.69 |
Sample | Ac1 (°C) | Ac3 (°C) | A_Rc (°C) |
---|---|---|---|
CR | 506 | 612 | 641 |
450 AQ1 | 580 | 630 | 656 |
450 WR | 503 | 595 | 637 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, S.; Xia, Y.; Xu, J.; Chen, H.; Yin, W. Heterogeneous Multi-Phase Grains Improving the Strength-Ductility Balance in Warm-Rolled Fe-18Mn-3Ti Steel. Materials 2024, 17, 2590. https://doi.org/10.3390/ma17112590
Li Y, Liu S, Xia Y, Xu J, Chen H, Yin W. Heterogeneous Multi-Phase Grains Improving the Strength-Ductility Balance in Warm-Rolled Fe-18Mn-3Ti Steel. Materials. 2024; 17(11):2590. https://doi.org/10.3390/ma17112590
Chicago/Turabian StyleLi, Yifeng, Shulin Liu, Yuanguang Xia, Juping Xu, Huaican Chen, and Wen Yin. 2024. "Heterogeneous Multi-Phase Grains Improving the Strength-Ductility Balance in Warm-Rolled Fe-18Mn-3Ti Steel" Materials 17, no. 11: 2590. https://doi.org/10.3390/ma17112590
APA StyleLi, Y., Liu, S., Xia, Y., Xu, J., Chen, H., & Yin, W. (2024). Heterogeneous Multi-Phase Grains Improving the Strength-Ductility Balance in Warm-Rolled Fe-18Mn-3Ti Steel. Materials, 17(11), 2590. https://doi.org/10.3390/ma17112590