Epoxidized Soybean Oleic Acid/Oligomeric Poly(lactic acid)-Grafted Nano-Hydroxyapatite and Its Role as a Filler in Poly(L-lactide) for Potential Bone Fixation Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Materials
2.2.1. Synthesis of Nano-Hydroxyapatite (HAP) and Epoxidized Soybean Oil-Grafted Hydroxyapatite (ESOA-HAP)
2.2.2. Synthesis of OPLA-Grafted HAP (OPLA-HAP) and OPLA-Grafted ESOA-HAP (OPLA-ESOA-HAP)
2.2.3. Preparation of the Blends Comprised of the HAP or Modified HAP with PLLA
2.3. Characterizations
2.4. Biocompatibility Test
2.4.1. Cultivation of the MSCs
- A0: The absorbance of the well with no material in it;
- A1: The absorbance of the control well;
- A2: The absorbance of the experimental group.
2.4.2. The Adhesion Test of MSCs on the Materials
2.5. Mechanical Test
3. Results and Discussion
3.1. Materials Characterization
3.2. The Biocompatibility of the HAP and Modified HAP
3.3. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Byun, H.; Madhurakkat Perikamana, S.K.; Lee, S.; Shin, H. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv. Healthc. Mater. 2019, 8, 1801106. [Google Scholar] [CrossRef] [PubMed]
- Sivaraj, K.K.; Adams, R.H. Blood vessel formation and function in bone. Development 2016, 143, 2706–2715. [Google Scholar] [CrossRef] [PubMed]
- Russias, J.; Saiz, E.; Nalla, R.K.; Gryn, K.; Ritchie, R.O.; Tomsia, A.P. Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation. Mater. Sci. Eng. C 2006, 26, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, M.; Jin, X.; Xu, J.; Lu, J.; Zhang, C.; Li, S.; Teng, L. Skeletal stability of bioresorbable fixation in orthognathic surgery: A systemic review. J. Craniomaxillofac. Surg. 2014, 42, e176–e181. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H. Hydrolytic Degradation. In Poly(Lactic Acid); Grossman, R.F., Nwabunma, D., Auras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2010; pp. 343–381. [Google Scholar]
- Liu, S.; Zheng, Y.; Wu, Z.; Hu, J.; Liu, R. Preparation and characterization of aspirin-loaded polylactic acid/graphene oxide biomimetic nanofibrous scaffolds. Polymer 2020, 211, 123093. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, C.; Wang, L.; Chen, H.; He, J.; Chen, Y. Novel Poly(l-lactide)/graphene oxide films with improved mechanical flexibility and antibacterial activity. J. Colloid Interface Sci. 2017, 507, 344–352. [Google Scholar] [CrossRef]
- Ji, M.; Li, H.; Guo, H.; Xie, A.; Wang, S.; Huang, F.; Li, S.; Shen, Y.; He, J. A novel porous aspirin-loaded (GO/CTS-HA)n nanocomposite films: Synthesis and multifunction for bone tissue engineering. Carbohydr. Polym. 2016, 153, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Marcacci, M.; Kon, E.; Zaffagnini, S.; Giardino, R.; Rocca, M.; Corsi, A.; Benvenuti, A.; Bianco, P.; Quarto, R.; Martin, I. Reconstruction of Extensive Long-Bone Defects in Sheep Using Porous Hydroxyapatite Sponges. Calcif. Tissue Int. 1999, 64, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Charernsriwilaiwat, N.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. Int. J. Pharm. 2012, 427, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Girão, A.F.; Semitela, Â.; Ramalho, G.; Completo, A.; Marques, P.A. Mimicking nature: Fabrication of 3D anisotropic electrospun polycaprolactone scaffolds for cartilage tissue engineering applications. Compos. Part B Eng. 2018, 154, 99–107. [Google Scholar] [CrossRef]
- Zhang, S.M.; Liu, J.; Zhou, W.; Cheng, L.; Guo, X.D. Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites. Curr. Appl. Phys. 2005, 5, 516–518. [Google Scholar] [CrossRef]
- Hammari, L.E.; Merroun, H.; Coradin, T.; Cassaignon, S.; Laghzizil, A.; Saoiabi, A. Mesoporous hydroxyapatites prepared in ethanol-water media: Structure and surface properties. Mater. Chem. Phys. 2007, 104, 448–453. [Google Scholar] [CrossRef]
- Pan, G.; Feng, Z.; Wei, J.; Yu, Y. Synthesis and Self-assembly Behavior of a Thermo-/photo-dual Responsive Triblock Copolymer. Acta Chim. Sin. 2013, 71, 733–738. [Google Scholar] [CrossRef]
- Behera, D.; Banthia, A.K. Synthesis, characterization, and kinetics study of thermal decomposition of epoxidized soybean oil acrylate. J. Appl. Polym. Sci. 2008, 109, 2583–2590. [Google Scholar] [CrossRef]
- Vijayarajan, S.; Selke, S.E.M.; Matuana, L.M. Continuous Blending Approach in the Manufacture of Epoxidized Soybean-Plasticized Poly(lactic acid) Sheets and Films. Macromol. Mater. Eng. 2014, 299, 622–630. [Google Scholar] [CrossRef]
- Brostr, M.J.; Boss, A.; Chronakis, I.S. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: Modulation of phase morphology, plasticization properties and thermal depolymerization. Biomacromolecules 2004, 5, 1124–1134. [Google Scholar] [CrossRef]
- Jiang, L.X. Effect of a new surface-grafting method for nano-hydroxyapatite on the dispersion and the mechanical enhancement for poly(lactide-co-glycolide). Polym. Lett. 2013, 8, 133–141. [Google Scholar] [CrossRef]
- Yi, W.-J.; Li, L.-J.; Hao, Z.; Jiang, M.; Lu, C.; Shen, Y.; Chao, Z.-S. Synthesis of l-Lactide via Degradation of Various Telechelic Oligomeric Poly(l-lactic acid) Intermediates. Ind. Eng. Chem. Res. 2017, 56, 4867–4877. [Google Scholar] [CrossRef]
- GB/T 1040.2-2022; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. Petroleum and Chemical Industry Federation: Beijing, China, 2022; Chinese Standard.
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef]
- Bianco, P.; Riminucci, M.; Gronthos, S.; Robey, P.G. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 2001, 19, 180–192. [Google Scholar] [CrossRef]
- Ruckh, T.T.; Kumar, K.; Kipper, M.J.; Popat, K.C. Osteogenic differentiation of bone marrow stromal cells on poly (ε-caprolactone) nanofiber scaffolds. Acta Biomater. 2010, 6, 2949–2959. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Das, M.; Balla, V.K. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells. Mater. Sci. Eng. C 2014, 39, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Hua, X.; Liang, P.; Rao, M.; Wang, Q.; Quan, C.; Zhang, C.; Jiang, Q. Synergistic reinforcement of polydopamine-coated hydroxyapatite and BMP2 biomimetic peptide on the bioactivity of PMMA-based cement. Compos. Sci. Technol. 2016, 123, 232–240. [Google Scholar] [CrossRef]
- Liuyun, J.; Chengdong, X.; Lixin, J.; Lijuan, X. Effect of HA with different grain size range on the crystallization behaviors and mechanical property of HA/PLGA composite. Thermochim. Acta 2013, 565, 52–57. [Google Scholar] [CrossRef]
- Jiang, L.; Xiong, C.; Chen, D.; Jiang, L.; Pang, X. Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite. Appl. Surf. Sci. 2012, 259, 72–78. [Google Scholar] [CrossRef]
- Diao, H.; Si, Y.; Zhu, A.; Ji, L.; Shi, H. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility. Mater. Sci. Eng. C 2012, 32, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chow, L.C.; Frukhtbeyn, S.A.; Ting, A.H.; Dong, Q.; Yang, M.; Mitchell, J.W. Improve the strength of PLA/HA composite through the use of surface initiated polymerization and phosphonic acid coupling agent. J. Res. Natl. Inst. Stand. Technol. 2011, 116, 785. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, X.L.; Zheng, Y.F. Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Appl. Surf. Sci. 2008, 255, 494–497. [Google Scholar] [CrossRef]
- Hong, Z.; Qiu, X.; Sun, J.; Deng, M.; Chen, X.; Jing, X. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer 2004, 45, 6699–6706. [Google Scholar] [CrossRef]
- Yi, W.-J.; Li, L.-J.; He, H.; Hao, Z.; Liu, B.; Shen, Y.; Chao, Z.-S. Poly(L-lactide)/cyclodextrin/citrate networks modified hydroxyapatite and its role as filler in the promotion to the properties of poly(L-lactide) biomaterials. Polymer 2018, 145, 1–10. [Google Scholar] [CrossRef]
Entry | Tg/°C | Tc/°C | Tm/°C | ΔHm/J/g | X/% |
---|---|---|---|---|---|
HAP/PLLA | 54.37 | 104.87 | 165.69 | 36.58 | 39.4 |
ESOA-HAP/PLLA | 54.50 | 108.36 | 166.20 | 35.16 | 37.5 |
OPLA-ESOA-HAP/PLLA | 55.76 | 109.14 | 166.73 | 32.94 | 35.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Luo, X.-Y.; Chao, Z.-S.; Zhang, Y.-F.; Liu, K.; Yi, W.-J.; Li, L.-J.; Zhou, Z. Epoxidized Soybean Oleic Acid/Oligomeric Poly(lactic acid)-Grafted Nano-Hydroxyapatite and Its Role as a Filler in Poly(L-lactide) for Potential Bone Fixation Application. Materials 2024, 17, 2620. https://doi.org/10.3390/ma17112620
Huang C, Luo X-Y, Chao Z-S, Zhang Y-F, Liu K, Yi W-J, Li L-J, Zhou Z. Epoxidized Soybean Oleic Acid/Oligomeric Poly(lactic acid)-Grafted Nano-Hydroxyapatite and Its Role as a Filler in Poly(L-lactide) for Potential Bone Fixation Application. Materials. 2024; 17(11):2620. https://doi.org/10.3390/ma17112620
Chicago/Turabian StyleHuang, Chen, Xin-Yu Luo, Zi-Sheng Chao, Yue-Fei Zhang, Kun Liu, Wen-Jun Yi, Li-Jun Li, and Zeyan Zhou. 2024. "Epoxidized Soybean Oleic Acid/Oligomeric Poly(lactic acid)-Grafted Nano-Hydroxyapatite and Its Role as a Filler in Poly(L-lactide) for Potential Bone Fixation Application" Materials 17, no. 11: 2620. https://doi.org/10.3390/ma17112620
APA StyleHuang, C., Luo, X. -Y., Chao, Z. -S., Zhang, Y. -F., Liu, K., Yi, W. -J., Li, L. -J., & Zhou, Z. (2024). Epoxidized Soybean Oleic Acid/Oligomeric Poly(lactic acid)-Grafted Nano-Hydroxyapatite and Its Role as a Filler in Poly(L-lactide) for Potential Bone Fixation Application. Materials, 17(11), 2620. https://doi.org/10.3390/ma17112620