Transition-Metal-Oxide-Based Nanozymes for Antitumor Applications
Abstract
:1. Introduction
2. Nanozymes
3. Enzymatic Activities of Nanozymes
3.1. Peroxidase (POD)-Mimicking Activity
3.2. Catalase (CAT)-Mimicking Activity
3.3. Glutathione Oxidase (GSH-OXD)-Mimicking Activity
3.4. Superoxide Dismutase (SOD)-Mimicking Activity
4. Transition Metal Oxide Nanozymes
4.1. Iron
4.2. Manganese
4.3. Copper
4.4. Cerium
4.5. Multimetallic Oxide
5. Improvement Strategies and Technologies of Nanozymes
6. Limitations
- (1)
- Although many multifunctional nanozymes have demonstrated promising results in vitro, their potential for clinical applications remains uncertain. For example, nanozymes should be designed to be hypersensitive to H2O2 for degradation since the concentration of H2O2 in vivo is around a few micromoles.
- (2)
- The cytotoxicity and biocompatibility of TMO-based nanozymes has not been fully confirmed, especially for nanomaterials containing transition metals. Further studies are required to investigate the mechanisms and pharmacokinetics of nanozymes based on TMOs before they can be considered for clinical application.
- (3)
- Nanozymes possessing multiple enzymatic activities have the ability to catalyze a diverse array of substrates. The multifunctional properties of nanozymes could be beneficial for expanding their applications in tumor therapy; however, they may also introduce some adverse factors. It is crucial to enhance the targeting ability of nanozymes and validate their localization. While nanozymes primarily exhibit oxidoreductase or hydrolase activities, there is a need for ongoing exploration and development of other enzyme-mimicking activities to cater to the diverse requirements of tumor treatment. This will enable nanozymes to exhibit a wider range of functions.
- (4)
- There is a need for more theoretical studies on multifunctional nanozymes in order to combine experimental and computational results and improve our understanding of their underlying principles. The catalytic mechanisms of these nanozymes remain unclear and require further investigation.
7. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA-Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yu, L.; Jiang, Q.; Huo, M.; Lin, H.; Wang, L.; Chen, Y.; Shi, J. Enhanced Tumor-Specific Disulfiram Chemotherapy by In Situ Cu2+ Chelation-Initiated Nontoxicity-to-Toxicity Transition. J. Am. Chem. Soc. 2019, 141, 11531–11539. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Yang, F.; Xie, T.; Du, Z.; Zhong, D.; Qi, Y.; Li, Y.; Li, W.; Lu, Z.; Rao, J.; et al. Engineered algae: A novel oxygen-generating system for effective treatment of hypoxic cancer. Sci. Adv. 2020, 6, eaba5996. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Yang, Z.; He, L.; Deng, L.; Fathi, P.; Zhu, S.; Li, L.; Shen, B.; Wang, Z.; Jacobson, O.; et al. A hybrid semiconducting organosilica-based O2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy. Nat. Commun. 2021, 12, 523. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Jiang, H.; Song, Y.; Zhu, Y.; Qin, M.; He, C.; Du, G.; Sun, X. Aluminum nanoparticles deliver a dual-epitope peptide for enhanced anti-tumor immunotherapy. J. Control. Release 2022, 344, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yang, C.; Li, J.; Ding, Y.; Zhang, L.; Yousaf, M.Z.; Lin, J.; Pang, R.; Wei, L.; Xu, L.; et al. Multifunctional Fe5C2 Nanoparticles: A Targeted Theranostic Platform for Magnetic Resonance Imaging and Photoacoustic Tomography-Guided Photothermal Therapy. Adv. Mater. 2014, 26, 4114–4120. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ju, Y.; Zhao, L.; Chu, X.; Yang, W.; Tian, Y.; Sheng, F.; Lin, J.; Liu, F.; Dong, Y.; et al. Multistimuli-Regulated Photochemothermal Cancer Therapy Remotely Controlled via Fe5C2 Nanoparticles. ACS Nano 2016, 10, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, H.; Yang, G.; Qian, C.; Gu, L.; Wang, H.; Zhou, W.; Liu, J.; Wu, Y.; Zhang, X.; et al. Metal–Organic Framework Derived Multicomponent Nanoagent as a Reactive Oxygen Species Amplifier for Enhanced Photodynamic Therapy. ACS Nano 2020, 14, 13500–13511. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Liu, C.; Wang, Z.; Kang, L.; Huang, Y.; Dong, K.; Ren, J.; Qu, X. Nanozyme Decorated Metal–Organic Frameworks for Enhanced Photodynamic Therapy. ACS Nano 2018, 12, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, H.; Phua, S.Z.F.; Yang, G.; Qi Lim, W.; Gu, L.; Qian, C.; Wang, H.; Guo, Z.; Chen, H.; et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Wang, W.; Huang, Z.; Liu, S.; Guo, J.; Zhang, F.; Yuan, H.; Li, X.; Liu, F.; Liu, H. MOF-Derived Double-Layer Hollow Nanoparticles with Oxygen Generation Ability for Multimodal Imaging-Guided Sonodynamic Therapy. Angew. Chem. Int. Ed. 2020, 59, 13557–13561. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, S.; Clever, G.H. Metallo-supramolecular Shell Enables Regioselective Multi-functionalization of Fullerenes. Chem 2020, 6, 5–7. [Google Scholar] [CrossRef]
- Tian, Q.; Xue, F.; Wang, Y.; Cheng, Y.; An, L.; Yang, S.; Chen, X.; Huang, G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021, 39, 101162. [Google Scholar] [CrossRef]
- Li, S.-L.; Jiang, P.; Jiang, F.-L.; Liu, Y. Recent Advances in Nanomaterial-Based Nanoplatforms for Chemodynamic Cancer Therapy. Adv. Funct. Mater. 2021, 31, 2100243. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, S.; Zhang, L.; Deng, Q.; Ren, J.; Qu, X. A Metabolic Multistage Glutathione Depletion Used for Tumor-Specific Chemodynamic Therapy. ACS Nano 2022, 16, 4228–4238. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, L.; Zhang, W.; Wang, X.; Geng, Y.; Zhang, Y.; Wang, L.; Zhang, W.; Zhang, Y.-J.; Xiao, S.; et al. A transistor-like pH-sensitive nanodetergent for selective cancer therapy. Nat. Nanotechnol. 2022, 17, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Yu, X.; Cecconello, A.; Sohn, Y.S.; Nechushtai, R.; Willner, I. Stimuli-responsive nucleic acid-functionalized metal–organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chem. Sci. 2017, 8, 5769–5780. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yuan, Y.; Cheng, Y.; Fu, D.; Chen, Z.; Wang, Y.; Zhang, L.; Yao, C.; Shi, L.; Li, M.; et al. Copper-Based Metal–Organic Framework Overcomes Cancer Chemoresistance through Systemically Disrupting Dynamically Balanced Cellular Redox Homeostasis. J. Am. Chem. Soc. 2022, 144, 4799–4809. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chang, M.; Li, C.; Chen, Q.; Hou, Z.; Xing, B.; Lin, J. Tumor-Microenvironment-Activated Reactive Oxygen Species Amplifier for Enzymatic Cascade Cancer Starvation/Chemodynamic /Immunotherapy. Adv. Mater. 2022, 34, 2106010. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Yu, X.; Liao, W.-C.; Sohn, Y.S.; Cecconello, A.; Kozell, A.; Nechushtai, R.; Willner, I. ATP-Responsive Aptamer-Based Metal–Organic Framework Nanoparticles (NMOFs) for the Controlled Release of Loads and Drugs. Adv. Funct. Mater. 2017, 27, 1702102. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, P.; Gong, T.; Wang, H.; Jiang, X.; Cheng, H.; Liu, Y.; Wu, Y.; Bu, W. Redox Dyshomeostasis Strategy for Hypoxic Tumor Therapy Based on DNAzyme-Loaded Electrophilic ZIFs. Angew. Chem. Int. Ed. 2020, 59, 22537–22543. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, Y.; Zhang, M.; Tang, Z.; He, M.; Bu, W. Modulating Hypoxia via Nanomaterials Chemistry for Efficient Treatment of Solid Tumors. Acc. Chem. Res. 2018, 51, 2502–2511. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [PubMed]
- Wang, Q.; Zhang, X.; Huang, L.; Zhang, Z.; Dong, S. GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis. Angew. Chem. Int. Ed. 2017, 56, 16082–16085. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Yan, M.; Huang, D.; Zeng, G.; Lai, C.; Li, M.; Huo, X.; Qin, L.; Liu, S.; Liu, X.; et al. Synergistic effect of artificial enzyme and 2D nano-structured Bi2WO6 for eco-friendly and efficient biomimetic photocatalysis. Appl. Catal. B-Environ. Energy. 2019, 250, 52–62. [Google Scholar] [CrossRef]
- Hu, R.; Fang, Y.; Huo, M.; Yao, H.; Wang, C.; Chen, Y.; Wu, R. Ultrasmall Cu2-xS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials 2019, 206, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, Y.; Zhang, K.; Zhu, R.; Chen, X.; Zhang, Z.; Yang, W. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity. Adv Mater. 2024, 11, 2306580. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Han, X.; Hu, H.; Chang, M.; Ding, L.; Xiang, H.; Chen, Y.; Li, Y. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 2021, 12, 2203. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, S.; Zheng, L.; Liu, Y.; Han, A.; Zhang, J.; Huang, Z.; Xie, H.; Fan, K.; Gao, L.; et al. A Bioinspired Five-Coordinated Single-Atom Iron Nanozyme for Tumor Catalytic Therapy. Adv. Mater. 2022, 34, 2107088. [Google Scholar] [CrossRef] [PubMed]
- Robert, A.; Meunier, B. How to Define a Nanozyme. ACS Nano 2022, 16, 6956–6959. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bai, Y.; Li, W.; Yang, F.; Zhang, G.; Pang, H. In Situ Growth of Three-Dimensional MXene/Metal–Organic Framework Composites for High-Performance Supercapacitors. Angew. Chem. Int. Ed. 2022, 61, e202116282. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, F.; Cao, S.; Bai, Y.; Zheng, S.; Li, W.; Zhang, S.; Hu, S.-X.; Pang, H. In Situ Synthesis of MOF-74 Family for High Areal Energy Density of Aqueous Nickel–Zinc Batteries. Adv. Mater. 2022, 34, 2201779. [Google Scholar] [CrossRef]
- Xie, S.-Y.; Li, X.-B. Metallic Graphene Nanoribbons. Nano-Micro Lett. 2021, 13, 53. [Google Scholar] [CrossRef]
- Xing, L.; Liu, X.-Y.; Zhou, T.-J.; Wan, X.; Wang, Y.; Jiang, H.-L. Photothermal nanozyme-ignited Fenton reaction-independent ferroptosis for breast cancer therapy. J. Control. Release 2021, 339, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Liu, Y.; Wang, Y.; Zhang, H. An Fe-based single-atom nanozyme with multi-enzyme activity for parallel catalytic therapy via a cascade reaction. Chem. Commun. 2022, 58, 7924–7927. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; Liu, C.; Ju, E.; Zhang, Y.; Ren, J.; Qu, X. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System. Angew. Chem. Int. Ed. 2016, 55, 6646–6650. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, F.; Wang, A.; Chen, X.; Li, H.; Zhang, X.; Zheng, H.; Ji, R.; Li, B.; Yu, X.; et al. Defect-Rich Adhesive Molybdenum Disulfide/rGO Vertical Heterostructures with Enhanced Nanozyme Activity for Smart Bacterial Killing Application. Adv. Mater. 2020, 32, 2005423. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. Multicopper Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Lu, N.; Huang, P.; Liu, Y.; Yang, Z.; Wang, S.; Yu, G.; Liu, Y.; Hu, J.; He, Q.; et al. Glucose-Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starving-Like/Gas Therapy. Angew. Chem. Int. Ed. 2017, 56, 1229–1233. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wang, J.-H.; Mao, Q.; Chen, X. Tunable Organelle Imaging by Rational Design of Carbon Dots and Utilization of Uptake Pathways. ACS Nano 2021, 15, 14465–14474. [Google Scholar]
- Fu, L.-H.; Wan, Y.; Qi, C.; He, J.; Li, C.; Yang, C.; Xu, H.; Lin, J.; Huang, P. Nanocatalytic Theranostics with Glutathione Depletion and Enhanced Reactive Oxygen Species Generation for Efficient Cancer Therapy. Adv. Mater. 2021, 33, 2006892. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Wu, C.; Niu, D.; Qin, L.; Wang, X.; Wang, Q.; Li, Y. Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy. Nat. Commun. 2021, 12, 5243. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Fan, H.; Chen, L.; He, J.; Hong, C.; Xie, J.; Hou, Y.; Wang, K.; Gao, X.; Gao, L.; et al. Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy. Nat. Commun. 2024, 15, 1626. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, Y.; Peng, F.; Meng, F.; Zha, J.; Ma, L.; Du, Y.; Peng, N.; Ma, L.; Zhang, Q.; et al. Intercalation-Activated Layered MoO3 Nanobelts as Biodegradable Nanozymes for Tumor-Specific Photo-Enhanced Catalytic Therapy. Angew. Chem. Int. Ed. 2022, 61, e202115939. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Wang, X.; Cheng, L.; Tang, Y.A.; Zhan, G.; Gong, F.; Zhang, R.; Hu, J.; Liu, Z.; Yang, X. GSH-Depleted PtCu3 Nanocages for Chemodynamic- Enhanced Sonodynamic Cancer Therapy. Adv. Funct. Mater. 2020, 30, 1907954. [Google Scholar] [CrossRef]
- Dong, S.; Dong, Y.; Jia, T.; Liu, S.; Liu, J.; Yang, D.; He, F.; Gai, S.; Yang, P.; Lin, J. GSH-Depleted Nanozymes with Hyperthermia-Enhanced Dual Enzyme-Mimic Activities for Tumor Nanocatalytic Therapy. Adv. Mater. 2020, 32, 2002439. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Savanur, M.A.; Srivastava, S.; D’Silva, P.; Mugesh, G. A Redox Modulatory Mn3O4 Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson’s Disease Model. Angew. Chem. Int. Ed. 2017, 129, 14455–14459. [Google Scholar] [CrossRef]
- Hu, X.; Li, F.; Xia, F.; Guo, X.; Wang, N.; Liang, L.; Yang, B.; Fan, K.; Yan, X.; Ling, D. Biodegradation-Mediated Enzymatic Activity-Tunable Molybdenum Oxide Nanourchins for Tumor-Specific Cascade Catalytic Therapy. J. Am. Chem. Soc. 2020, 142, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Fang, G.; Shen, X.; Chong, Y.; Wamer, W.G.; Gao, X.; Chai, Z.; Chen, C.; Yin, J.-J. Facet Energy versus Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano 2016, 10, 10436–10445. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, M.; Qian, Y.; Li, L.; Sun, Q.; Gao, M.; Li, C. Novel PdPtCu Nanozymes for Reprogramming Tumor Microenvironment to Boost Immunotherapy Through Endoplasmic Reticulum Stress and Blocking IDO-Mediated Immune Escape. Small 2023, 19, 2303596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Gao, A.; Zhou, C.; Xue, C.; Zhang, Q.; Fuente, J.M.D.L.; Cui, D. Confining Prepared Ultrasmall Nanozymes Loading ATO for Lung Cancer Catalytic Therapy/Immunotherapy. Adv. Mater. 2023, 35, 2303722. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Pu, Y.; Wang, M.; Wu, W.; Qin, H.; Shi, J. MnOOH-Catalyzed Autoxidation of Glutathione for Reactive Oxygen Species Production and Nanocatalytic Tumor Innate Immunotherapy. J. Am. Chem. Soc. 2023, 145, 5803–5815. [Google Scholar] [CrossRef]
- Chen, T.; Zou, H.; Wu, X.; Liu, C.; Situ, B.; Zheng, L.; Yang, G. Nanozymatic Antioxidant System Based on MoS2 Nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 12453–12462. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, S.; Yin, J.-J.; He, W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865. [Google Scholar] [CrossRef]
- Fu, S.; Yang, R.; Zhang, L.; Liu, W.; Du, G.; Cao, Y.; Xu, Z.; Cui, H.; Kang, Y.; Xue, P. Biomimetic CoO@AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy. Biomaterials 2020, 257, 120279. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.-M.; Li, P.; Yu, Y.-P.; Jiang, M.; Yang, X.; Zhang, P.; Nie, J.; Hu, J.; Yu, X.; Xu, L. Bimetallic Ions Functionalized Metal–Organic-Framework Nanozyme for Tumor Microenvironment Regulating and Enhanced Photodynamic Therapy for Hypoxic Tumor. Adv. Healthc. Mater. 2023, 12, 2300821. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, H.; Wang, C.; Gu, L.; Chen, H.; Jana, D.; Feng, L.; Liu, J.; Wang, X.; Xu, P.; et al. Self-Assembled Single-Site Nanozyme for Tumor-Specific Amplified Cascade Enzymatic Therapy. Nat. Commun. 2021, 60, 3001–3007. [Google Scholar]
- Meng, X.; Li, D.; Chen, L.; He, H.; Wang, Q.; Hong, C.; He, J.; Gao, X.; Yang, Y.; Jiang, B.; et al. High-Performance Self-Cascade Pyrite Nanozymes for Apoptosis–Ferroptosis Synergistic Tumor Therapy. ACS Nano 2021, 15, 5735–5751. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, M.; Chang, M.; Yuan, M.; Zhang, W.; Tan, J.; Ding, B.; Ma, P.A.; Lin, J. Heterostructural Nanoadjuvant CuSe/CoSe2 for Potentiating Ferroptosis and Photoimmunotherapy through Intratumoral Blocked Lactate Efflux. J. Am. Chem. Soc. 2023, 145, 7205–7217. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, X.; Wu, L.; Xiang, H.; Chen, Y.; Zhang, R. Atomic vacancies-engineered ultrathin trimetallic nanozyme with anti-inflammation and antitumor performances for intestinal disease treatment. Biomaterials 2023, 299, 122178. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Lin, Y.; Wang, J.; Wu, L.; Wei, W.; Ren, J.; Qu, X. Nanoceria-triggered synergetic drug release based on CeO2-capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO2. Adv. Healthc. Mater. 2013, 2, 1591-9. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, B.; Li, J.; Niu, B.; Cao, L.; Liang, X.-J.; Zhang, J.; Jin, Y.; Yang, X. Catalytic Tunable Black Phosphorus/Ceria Nanozyme: A Versatile Oxidation Cycle Accelerator for Alleviating Cisplatin-Induced Acute Kidney Injury. Adv. Healthc. Mater. 2023, 12, 2301691. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Z.; Li, Z.; Zhang, X.; Zhang, H.; Zhang, T.; Meng, X.; Sheng, F.; Hou, Y. Amelioration of systemic antitumor immune responses in cocktail therapy by immunomodulatory nanozymes. Sci. Adv. 2022, 8, eabn3883. [Google Scholar] [CrossRef] [PubMed]
- Biercuk, M.J.; Reilly, D.J. Solid-state spins survive. Nat. Nanotechnol. 2011, 6, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhang, Y.; Sun, L.; Wang, J.; Zhao, Z.; Huang, Z.; Mao, W.; Xue, R.; Chen, R.; Luo, J.; et al. Modulated Ultrasmall γ-Fe2O3 Nanocrystal Assemblies for Switchable Magnetic Resonance Imaging and Photothermal-Ferroptotic-Chemical Synergistic Cancer Therapy. Adv. Funct. Mater. 2023, 33, 2211251. [Google Scholar] [CrossRef]
- Wang, L.; Huo, M.; Chen, Y.; Shi, J. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials 2018, 163, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Wen, Y.; Yu, Y.; Li, H.; Wang, J.; Sun, B. Bioinspired nanocatalytic tumor therapy by simultaneous reactive oxygen species generation enhancement and glutamine pathway-mediated glutathione depletion. J. Mater. Chem. B. 2023, 11, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, P.B.; Silvestri, N.; Fernandez-Cabada, T.; Marinaro, F.; Fernandes, S.; Fiorito, S.; Miscuglio, M.; Serantes, D.; Ruta, S.; Livesey, K.; et al. Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy. Adv. Mater. 2020, 32, 2003712. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-S.; Song, J.; Song, L.; Ke, K.; Liu, Y.; Zhou, Z.; Shen, Z.; Li, J.; Yang, Z.; Tang, W.; et al. Simultaneous Fenton-like Ion Delivery and Glutathione Depletion by MnO2-Based Nanoagent to Enhance Chemodynamic Therapy. Angew. Chem. Int. Ed. 2018, 57, 4902–4906. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Liu, F.; Chen, Q.; Wang, L.; Guan, S.; Zhou, S.; Chen, Y. Revealing Mn doping effect in transition metal phosphides to trigger active centers for highly efficient chemodynamic and NIR-II photothermal therapy. Chem. Eng. J. 2022, 435, 134780. [Google Scholar] [CrossRef]
- Xu, J.; Han, W.; Yang, P.; Jia, T.; Dong, S.; Bi, H.; Gulzar, A.; Yang, D.; Gai, S.; He, F.; et al. Tumor Microenvironment-Responsive Mesoporous MnO2-Coated Upconversion Nanoplatform for Self-Enhanced Tumor Theranostics. Adv. Funct. Mater. 2018, 28, 1803804. [Google Scholar] [CrossRef]
- Fan, W.; Bu, W.; Shen, B.; He, Q.; Cui, Z.; Liu, Y.; Zheng, X.; Zhao, K.; Shi, J. Intelligent MnO2 Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pH-/H2O2-Responsive UCL Imaging and Oxygen-Elevated Synergetic Therapy. Adv. Mater. 2015, 27, 4155–4161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, B.; Du, Y.; Zhou, G.; Tang, Y.; Shi, Y.; Zhang, B.; Xu, Z.; Huang, Q. A novel intelligent PANI/ PPy@Au@MnO2 yolk − shell nanozyme for MRI-guided ‘triple-mode’ synergistic targeted anti-tumor therapy. Chem. Eng. J. 2021, 424, 130356. [Google Scholar] [CrossRef]
- Xu, X.; Duan, J.; Liu, Y.; Kuang, Y.; Duan, J.; Liao, T.; Xu, Z.; Jiang, B.; Li, C. Multi-stimuli responsive hollow MnO2-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy. Acta Biomater. 2021, 126, 445–462. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.-F.; Jia, H.-R.; Zhu, Y.-X.; Liu, X.; Gao, G.; Li, Y.-H.; Wu, F.-G. Cholesterol-Modified Dendrimers for Constructing a Tumor Microenvironment-Responsive Drug Delivery System. ACS Biomater. Sci. Eng. 2019, 5, 6072–6081. [Google Scholar] [CrossRef] [PubMed]
- Miriyala, S.; Spasojevic, I.; Tovmasyan, A.; Salvemini, D.; Vujaskovic, Z.; St. Clair, D.; Batinic-Haberle, I. Manganese superoxide dismutase, MnSOD and its mimics. BBA Mol. Basis Dis. 2012, 1822, 794–814. [Google Scholar] [CrossRef]
- Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S.; Wang, X.; Wu, J.; Li, S.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Qian, A.; Zou, Y.; Lin, M.; Pan, W.; Chen, M.; Meng, W.; Zhang, W.; Chen, J. Immunogenic radiation therapy for enhanced anti-tumor immunity via core-shell nanocomposite-mediated multiple strategies. Theranostics 2023, 13, 4121–4137. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Tian, M.; Li, C. Copper-Based Nanomaterials for Cancer Imaging and Therapy. Bioconjugate Chem. 2016, 27, 1188–1199. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhang, H.; Liu, Y.; Ni, D.; Zhang, H.; Zhang, J.; Yao, Z.; He, M.; Shi, J.; Bu, W. Antiferromagnetic Pyrite as the Tumor Microenvironment-Mediated Nanoplatform for Self-Enhanced Tumor Imaging and Therapy. Adv. Mater. 2017, 29, 1701683. [Google Scholar] [CrossRef]
- Xiong, Q.; Liu, A.; Ren, Q.; Xue, Y.; Yu, X.; Ying, Y.; Gao, H.; Tan, H.; Zhang, Z.; Li, W.; et al. Cuprous oxide nanoparticles trigger reactive oxygen species-induced apoptosis through activation of erk-dependent autophagy in bladder cancer. Cell Death Dis. 2020, 11, 366. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Wang, Y.; Chen, Y.; Yan, J.; Hao, F.; Su, X.; Zhang, C.; Xu, M. Cuprous oxide nanoparticles inhibit the growth of cervical carcinoma by inducing autophagy. Cell Death Dis. 2017, 8, 61083. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yan, Z.; Sun, M.; Feng, X.; Wang, W.; Yuan, Z. Cuprous Oxide-Based Dual Catalytic Nanostructures for Tumor Vascular Normalization-Enhanced Chemodynamic Therapy. ACS Appl. Nano Mater. 2023, 6, 6911–6919. [Google Scholar] [CrossRef]
- Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M.H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yuan, Y.; Zhang, L.; Zhao, J.; Majeed, S.; Xu, G. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal. Chim. Acta. 2013, 762, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xiao, B.; Xiang, F.; Tan, J.; Chen, Z.; Zhang, X.; Wu, C.; Mao, Z.; Luo, G.; Chen, X.; et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11, 2788. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhou, K.; Qian, Y.; Liu, H.; Wang, X.; Lin, Y.; Shi, X.; Tian, Y.; Lu, Y.; Chen, Q.; et al. Hollow Cuprous Oxide@Nitrogen-Doped Carbon Nanocapsules for Cascade Chemodynamic Therapy. Small 2022, 18, 2107422. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Han, J.; Zhang, K.; Jiang, Q.; Sui, Z.; Zhang, Z.; Zhao, B.; Liang, Z.; Zhang, L.; Zhang, Y. Targeted killing of tumor cells based on isoelectric point suitable nanoceria-rod with high oxygen vacancies. J. Mater. Chem. B. 2022, 10, 1410–1417. [Google Scholar] [CrossRef]
- Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J.M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 2308–2312. [Google Scholar] [CrossRef]
- Mehmood, R.; Wang, X.; Koshy, P.; Yang, J.L.; Sorrell, C.C. Engineering oxygen vacancies through construction of morphology maps for bio-responsive nanoceria for osteosarcoma therapy. CrystEngComm 2018, 20, 1536–1545. [Google Scholar] [CrossRef]
- Xu, C.; Qu, X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014, 6, e90. [Google Scholar] [CrossRef]
- Paier, J.; Penschke, C.; Sauer, J. Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. Chem. Rev. 2013, 113, 3949–3985. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, L.; Yang, X.; Elzatahry, A.A.; Alghamdi, A.; Deng, Y. Rational design of a stable peroxidase mimic for colorimetric detection of H2O2 and glucose: A synergistic CeO2/Zeolite Y nanocomposite. J. Colloid. Interf. Sci. 2019, 535, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Wang, S.; Zheng, H.; Yang, S.; Zhou, L.; Liu, K.; Zhang, Q.; Zhang, H. Cu-doped cerium oxide-based nanomedicine for tumor microenvironment-stimulative chemo-chemodynamic therapy with minimal side effects. J. Colloid. Interf. Sci. 2021, 205, 111878. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zhang, K.; Sun, Z.; Pan, H.; Yang, K.; Jiang, B.; Zhao, B.; Liang, Z.; Zhang, Y.; Zhang, L. Pushpin-like nanozyme for plasmon-enhanced tumor targeted therapy. Acta Biomater. 2023, 158, 673–685. [Google Scholar] [CrossRef]
- Dai, X.; Zhu, Y.; Su, M.; Chen, J.; Shen, S.; Xu, C.-F.; Yang, X. Rigid Shell Decorated Nanodevice with Fe/H2O2 Supply and Glutathione Depletion Capabilities for Potentiated Ferroptosis and Synergized Immunotherapy. Adv. Funct. Mater. 2023, 33, 2215022. [Google Scholar] [CrossRef]
- Lei, H.; Pei, Z.; Jiang, C.; Cheng, L. Recent progress of metal-based nanomaterials with anti-tumor biological effects for enhanced cancer therapy. Exploration 2023, 3, 20220001. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, M.; Land, W.G.; Tonnus, W.; Hugo, C.P.; Linkermann, A. Origin and Consequences of Necroinflammation. Physiol. Rev. 2018, 98, 727–780. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, R.; Wei, X.; Lv, M.; Jiang, Z. Chapter Seven-Metalloimmunology: The metal ion-controlled immunity. Adv. Immunol. 2020, 145, 187–241. [Google Scholar] [PubMed]
- Sun, X.; Zhang, Y.; Li, J.; Park, K.S.; Han, K.; Zhou, X.; Xu, Y.; Nam, J.; Xu, J.; Shi, X.; et al. Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 2021, 16, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, C.; Guan, Y.; Wei, X.; Sha, M.; Yi, M.; Jing, M.; Lv, M.; Guo, W.; Xu, J.; et al. Manganese salts function as potent adjuvants. Cell Mol. Immunol. 2021, 18, 1222–1234. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Li, Q.; Li, G.; Wang, T.; Lv, X.; Pei, Z.; Gao, X.; Yang, N.; Gong, F.; Yang, Y.; et al. Manganese molybdate nanodots with dual amplification of STING activation for “cycle” treatment of metalloimmunotherapy. Bioact. Mater. 2024, 31, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, C.; Zhao, R.; Du, Y.; Yang, D.; Ding, H.; Yang, G.; Gai, S.; He, F.; Yang, P. Engineering oxygen vacancy of MoOx nanozyme by Mn doping for dual-route cascaded catalysis mediated high tumor eradication. J. Colloid. Interf. Sci. 2022, 623, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shi, X.; Qu, Y.; Wang, G. Functionalized ZnMnFe2O4–PEG–FA nanoenzymes integrating diagnosis and therapy for targeting hepatic carcinoma guided by multi-modality imaging. Nanoscale 2023, 15, 11013–11025. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Cao, M.; Liu, J.; Hei, Y.; Bai, J. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia. Acta Biomater. 2021, 135, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-T.; Lu, Y.-J.; Mi, F.-L.; Burnouf, T.; Wei, Y.-T.; Chiu, S.-C.; Chuang, E.-Y.; Lu, S.-Y. Catalase-Modulated Heterogeneous Fenton Reaction for Selective Cancer Cell Eradication: SnFe2O4 Nanocrystals as an Effective Reagent for Treating Lung Cancer Cells. ACS Appl. Mater. Interfaces 2017, 9, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-T.; Liu, D.-M.; Lu, S.-Y. SnFe2O4 Nanocrystals as Highly Efficient Catalysts for Hydrogen-Peroxide Sensing. Chem. Eur. J. 2016, 22, 10877–10883. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-T.; Lu, S.-Y. A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe2O4 nanocrystals from a carrier solvent assisted interfacial reaction process. J. Mater. Chem. A 2015, 3, 12259–12267. [Google Scholar] [CrossRef]
- Liu, F.X.; Li, T.Z. Synthesis and magnetic properties of SnFe2O4 nanoparticles. Mater. Lett. 2005, 59, 194–196. [Google Scholar] [CrossRef]
- Feng, L.; Liu, B.; Xie, R.; Wang, D.; Qian, C.; Zhou, W.; Liu, J.; Jana, D.; Yang, P.; Zhao, Y. An Ultrasmall SnFe2O4 Nanozyme with Endogenous Oxygen Generation and Glutathione Depletion for Synergistic Cancer Therapy. Adv. Funct. Mater. 2021, 31, 2006216. [Google Scholar] [CrossRef]
- Wang, Q.; Niu, D.; Shi, J.; Wang, L. A Three-in-one ZIFs-Derived CuCo(O)/GOx@PCNs Hybrid Cascade Nanozyme for Immunotherapy/Enhanced Starvation/Photothermal Therapy. ACS Appl. Mater. Interfaces 2021, 13, 11683–11695. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhao, X.; Zhang, J.; Li, W. DNA-Based Platinum Nanozymes for Peroxidase Mimetics. J. Phys. Chem. C 2014, 118, 18116–18125. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Cheng, X.; Zhao, Y.; Luo, W.; Elzatahry, A.A.; Alghamdi, A.; He, X.; Su, J.; Deng, Y. Highly dispersed Pt nanoparticles on ultrasmall EMT zeolite: A peroxidase-mimic nanoenzyme for detection of H2O2 or glucose. J. Colloid. Interf. Sci. 2020, 570, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D. Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal. Chim. Acta 2013, 776, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, A.; Siao, Y.-D.; Yang, S.-T.; Hsieh, P.-V.; Fukushima, H.; Chang, Y.; Ruaan, R.-C.; Chen, W.-Y. Preparation of a DNA Aptamer−Pt Complex and Its Use in the Colorimetric Sensing of Thrombin and Anti-Thrombin Antibodies. Anal. Chem. 2008, 80, 6580–6586. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.F.; Zhang, Y.; Gu, N. Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chin. Chem. Lett. 2008, 19, 730–733. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148. [Google Scholar] [CrossRef]
- Dutta, S.; Corni, S.; Brancolini, G. Molecular Dynamics Simulations of a Catalytic Multivalent Peptide–Nanoparticle Complex. Int. J. Mol. Sci. 2021, 22, 3624. [Google Scholar] [CrossRef] [PubMed]
- Kyrychenko, A.; Blazhynska, M.M.; Kalugin, O.N. Protonation-dependent adsorption of polyarginine onto silver nanoparticles. J. Appl. Phys. 2020, 127, 075502. [Google Scholar] [CrossRef]
- Power, D.; Rouse, I.; Poggio, S.; Brandt, E.; Lopez, H.; Lyubartsev, A.; Lobaskin, V. A multiscale model of protein adsorption on a nanoparticle surface. Model. Simul. Mater. Sci. 2019, 27, 084003. [Google Scholar] [CrossRef]
- Tavanti, F.; Pedone, A.; Menziani, M.C. Multiscale Molecular Dynamics Simulation of Multiple Protein Adsorption on Gold Nanoparticles. Model. Simul. Mater. Sci. Eng. 2019, 20, 3539. [Google Scholar] [CrossRef] [PubMed]
Nanozyme | Transition Metal Ions | Enzymatic Activity | Applications | Target Tissue | Type of Study | Types of Cell | Types of Model | References |
---|---|---|---|---|---|---|---|---|
DMSN-Au-Fe3O4-CB839 | Fe | GOx, POD | Fenton-like reactions, CDT | Subcutaneous tumor | in vitro/in vivo | 4T1 | BALB/c mice | [68] |
rFeOx-HMSN | Fe | POD | Fenton-like reactions, T2-MRI | Subcutaneous tumor | in vitro/in vivo | 4T1 | Nude mice | [67] |
UF@PPDF | Fe | POD, GSH-OXD | T1-weighted MRI, photothermal ferroptotic chemical synergistic cancer therapy | Subcutaneous tumor | in vitro/in vivo | HeLa | BALB/c mice | [66] |
Ce6/MnO2@DPC NPs | Mn | CAT | Enhanced PDT | Subcutaneous tumor | in vitro/in vivo | U14 | Nude mice | [76] |
MS@MnO2 | Mn | POD | MRI-monitored chemodynamic combination therapy | In situ implanted tumor | in vitro/in vivo | U87MG | Nude mice | [70] |
UiO@Mn3O4@PAA | Mn | CAT, POD, GSH-OXD | Improve the efficacy of immunogenic RT by priming strong ICD | Subcutaneous tumor | in vitro/in vivo | 4T1 | BALB/c mice | [79] |
Mn3O4 NPs | Mn | CAT, SOD | Treating ROS-related diseases | / | in vitro/in vivo | HeLa | Kunming mice | [78] |
Cu5.4O USNPs | Cu | CAT, SOD, GSH-OXD | Against ROS-mediated damage | / | in vitro/in vivo | HEK293 | BALB/c mice | [87] |
Au/CeO2 | Ce | OXD, POD | Superior antitumor effects both in vitro and in vivo | Subcutaneous tumor | in vitro/in vivo | SMMC-7721 | BALB/c nude mice | [96] |
Cu-CeO2 NPs | Ce | CAT, POD | Effective breast cancer therapy | Subcutaneous tumor | in vitro/in vivo | MDA-MB-231 | Nude mice | [95] |
Cu2O@Dex | Cu | POD | Enhanced CDT | Subcutaneous tumor | in vitro/in vivo | HepG2 | ICR mice | [84] |
Cu2O | Cu | POD, GSH-OXD | Fenton-like reaction, CDT | / | in vitro | AGS/MKN45 | / | [88] |
ZnMnFe2O4 | Zn, Mn, Fe | POD, | Synergistic tumor cell diagnosis and ablation | Subcutaneous tumor | in vitro/in vivo | HepG2 | Nude mice | [104] |
MnMoOx | Mn, Mo | POD, GSH-OXD | Antitumor metalloimmunotherapy | Subcutaneous tumor | in vitro/in vivo | CT26 | BALB/c | [103] |
SnFe2O4 | Sn, Fe | POD, GSH-OXD, CAT | Imaging-guided synergetic CDT/PTT/PDT. | Subcutaneous tumor | in vitro/in vivo | 4T1 | BALB/c nude | [111] |
CuMnOx | Cu, Mn | POD, GSH-OXD, CAT, OXD | Photothermally enhanced multiple catalysis against tumor hypoxia | Subcutaneous tumor | in vitro/in vivo | HeLa | Kunming mice | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Bai, Y.; Zhao, D.; Wang, J.; Qiu, L. Transition-Metal-Oxide-Based Nanozymes for Antitumor Applications. Materials 2024, 17, 2896. https://doi.org/10.3390/ma17122896
Sun H, Bai Y, Zhao D, Wang J, Qiu L. Transition-Metal-Oxide-Based Nanozymes for Antitumor Applications. Materials. 2024; 17(12):2896. https://doi.org/10.3390/ma17122896
Chicago/Turabian StyleSun, Huilin, Yang Bai, Donghui Zhao, Jianhao Wang, and Lin Qiu. 2024. "Transition-Metal-Oxide-Based Nanozymes for Antitumor Applications" Materials 17, no. 12: 2896. https://doi.org/10.3390/ma17122896
APA StyleSun, H., Bai, Y., Zhao, D., Wang, J., & Qiu, L. (2024). Transition-Metal-Oxide-Based Nanozymes for Antitumor Applications. Materials, 17(12), 2896. https://doi.org/10.3390/ma17122896