Influence of Residue Soil on the Properties of Fly Ash–Slag-Based Geopolymer Materials for 3D Printing
Abstract
:1. Introduction
2. Raw Materials and Experimental Methods
2.1. Raw Materials
2.2. Mix Design
2.3. Flowability Test
2.4. Setting Time
2.5. Rheological Characteristics
2.6. Open Time
2.7. Printability
2.7.1. Extrudability
2.7.2. Shape Retention
2.7.3. Constructability
2.8. Mechanical Properties
3. Experimental Results and Discussion
3.1. Fluidity and Setting Time
3.2. Rheological Characteristics
3.2.1. Static and Dynamic Yield Stress
3.2.2. Apparent and Plastic Viscosity
3.3. Printability
3.3.1. Open Time
3.3.2. Extrudability
3.3.3. Shape Retention Ability
3.3.4. Constructability
3.4. Mechanical Properties
4. Conclusions
- Increasing the RS content significantly increases the static and dynamic yield strength of the geopolymer mortar, while also increasing the apparent viscosity, which helps to improve printability. Compared to the control group RS-0, the static and dynamic yield strength of RS-110 increased by 113.6% and 282.5%, respectively.
- Except RS-110, all other materials can be extruded smoothly. A higher RS content considerably lessens geopolymer fluidity, with its detrimental effects greatly outstripping the positives from water content, potentially causing extrusion problems like blockages or uneven flow. For geopolymer 3D printing materials containing RS, good extrudability can be ensured if the flow value is >145 mm.
- The addition of RS improves the shape retention ability of geopolymer 3D printing materials. However, too much RS can affect the extrudability and reduce the shape retention ability. RS-30 shows good constructability, but increasing structural weight leads to increased lateral bending deformation. The failure occurred when the number of printed layers reached 47 at a printed height of 986.2 mm due to buckling instability.
- As the RS content increases, the compressive strength of the specimens gradually decreases, and the 28-day compressive strength of the printed specimens is lower than that of the cast specimens in all three loading directions. The compressive strength of geopolymer materials containing RS shows significant anisotropy at 28 days, with the highest value in the X-direction, followed by the Z-direction and the Y-direction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ASTM F2792-12a; Standard Terminology for Additive Manufacturing Technologies, (Withdrawn 2015). American Society of Testing and Materials: West Conshohocken, PA, USA, 2012.
- Wohlers, T.T.; Caffrey, T. Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry; Wohlers Associates Inc.: Fort Collins, CO, USA, 2014. [Google Scholar]
- Bogue, R. 3D printing: The dawn of a new era in manufacturing. Assem. Autom. 2013, 33, 307–311. [Google Scholar] [CrossRef]
- Chen, Y.; Jansen, K.; Zhang, H.; Rodriguez, C.R.; Gan, Y.; Çopuroğlu, O.; Schlangen, E. Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: An experimental and numerical study. Constr. Build. Mater. 2020, 262, 120094. [Google Scholar] [CrossRef]
- Xiao, J.; Ji, G.; Zhang, Y.; Ma, G.; Mechtcherine, V.; Pan, J.; Wang, L.; Ding, T.; Duan, Z.; Du, S. Large-scale 3D printing concrete technology: Current status and future opportunities. Cem. Concr. Compos. 2021, 122, 104115. [Google Scholar] [CrossRef]
- Nerella, V.N.; Krause, M.; Mechtcherine, V. Direct printing test for buildability of 3D-printable concrete considering economic viability. Automat. Constr. 2020, 109, 102986. [Google Scholar] [CrossRef]
- Paul, S.C.; van Zijl, G.P.A.G.; Tan, M.J.; Gibson, I. A review of 3D concrete printing systems and materials properties: Current status and future research prospects. Rapid Prototyp. J. 2018, 24, 784–798. [Google Scholar] [CrossRef]
- Mohan, M.K.; Rahul, A.V.; De Schutter, G.; Van Tittelboom, K. Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review. Cem. Concr. Compos. 2021, 115, 103855. [Google Scholar] [CrossRef]
- Ma, C.K.; Awang, A.Z.; Omar, W. Structural and material performance of geopolymer concrete: A review. Constr. Build. Mater. 2018, 186, 90–102. [Google Scholar] [CrossRef]
- Panda, B.; Singh, G.B.; Unluer, C.; Tan, M.J. Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. J. Clean. Prod. 2019, 220, 610–619. [Google Scholar] [CrossRef]
- Al-Noaimat, Y.A.; Ghaffar, S.H.; Chougan, M.; Al-Kheetan, M.J. A review of 3D printing low-carbon concrete with one-part geopolymer: Engineering, environmental and economic feasibility. Case Stud. Constr. Mater. 2023, 18, e01818. [Google Scholar] [CrossRef]
- Hendriks, C.; de Jager, D.; Harnisch, J.; Bates, J.; Mantzos, L.; Vainio, M. Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change. In Greenhouse Gas Control Technologies, Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, 1–4 October 2002; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, F.; Liu, J.; Wang, S. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash. Cem. Concr. Res. 2020, 137, 106200. [Google Scholar] [CrossRef]
- Skibicki, S.; Federowicz, K.; Hoffmann, M.; Chougan, M.; Sibera, D.; Cendrowski, K.; Techman, M.; Pacheco, J.N.; Liard, M.; Sikora, P. Potential of Reusing 3D Printed Concrete (3DPC) Fine Recycled Aggregates as a Strategy towards Decreasing Cement Content in 3DPC. Materials 2024, 17, 2580. [Google Scholar] [CrossRef]
- Butkute, K.; Vaitkevicius, V.; Sinka, M.; Augonis, A.; Korjakins, A. Influence of Carbonated Bottom Slag Granules in 3D Concrete Printing. Materials 2023, 16, 4045. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, H.; Nair, S.A.O.; Neithalath, N. Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders. Mater. Des. 2019, 167, 107634. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem. Concr. Compos. 2018, 94, 307–314. [Google Scholar] [CrossRef]
- Ranjbar, N.; Kuenzel, C.; Spangenberg, J.; Mehrali, M. Hardening evolution of geopolymers from setting to equilibrium: A review. Cem. Concr. Comp. 2020, 114, 103729. [Google Scholar] [CrossRef]
- Panda, B.; Ruan, S.; Unluer, C.; Tan, M.J. Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. Compos. Part B Eng. 2019, 165, 75–83. [Google Scholar] [CrossRef]
- Chi, M.; Huang, R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr. Build. Mater. 2013, 40, 291–298. [Google Scholar] [CrossRef]
- Shilar, F.A.; Ganachari, S.V.; Patil, V.B.; Bhojaraja, B.E.; Khan, T.M.Y.; Almakayeel, N. A review of 3D printing of geopolymer composites for structural and functional applications. Constr. Build. Mater. 2023, 400, 132869. [Google Scholar] [CrossRef]
- Maheepala, M.; Nasvi, M.; Robert, D.; Gunasekara, C.; Kurukulasuriya, L. A comprehensive review on geotechnical properties of alkali activated binder treated expansive soil. J. Clean. Prod. 2022, 363, 132488. [Google Scholar] [CrossRef]
- Wattez, T.; Patapy, C.; Frouin, L.; Waligora, J.; Cyr, M. Interactions between alkali-activated ground granulated blastfurnace slag and organic matter in soil stabilization/solidification. Transp. Geotech. 2020, 26, 100412. [Google Scholar] [CrossRef]
- Luo, F.; Cui, P.; Tang, W.; Wu, C.; Kou, S. Influences of engineering spoil on the properties and microstructure of 3D printable magnesium cement. Constr. Build. Mater. 2023, 404, 133150. [Google Scholar] [CrossRef]
- Chougan, M.; Ghaffar, S.H.; Nematollahi, B.; Sikora, P.; Dorn, T.; Stephan, D.; Albar, A.; Al-Kheetan, M.J. Effect of natural and calcined halloysite clay minerals as low-cost additives on the performance of 3D-printed alkali-activated materials. Mater. Des. 2022, 223, 111183. [Google Scholar] [CrossRef]
- Asaf, O.; Bentur, A.; Larianovsky, P.; Sprecher, A. From soil to printed structures: A systematic approach to designing clay-based materials for 3D printing in construction and architecture. Constr. Build. Mater. 2023, 408, 133783. [Google Scholar] [CrossRef]
- GB/T 50123-2019; Standard for Geotechnical Testing Method. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation: Beijing, China, 2019.
- Westerholm, M.; Lagerblad, B.; Silfwerbrand, J. Influence of fine aggregate characteristics on the rheological properties of mortars. Cem. Concr. Compos. 2008, 30, 274–282. [Google Scholar] [CrossRef]
- GB/T 2419-2005; Test Method for Fluidity of Cement Mortar. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2005.
- GB/T 1346-2011; Test methods for water requirement of normal consistency, setting time and soundness of the portland cement. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011.
- Liu, Z.; Li, M.; Weng, Y.; Qian, Y.; Wong, T.N.; Tan, M.J. Modelling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine. Compos. Part B Eng. 2020, 193, 108018. [Google Scholar] [CrossRef]
- ASTM C109/C109M-13; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Or [50-mm] Cube Specimens). ASTM Committee C01: West Conshohocken, PA, USA, 2013.
- Lee, K.; Kim, J. Performance evaluation of modified marine dredged soil and recycled in-situ soil as controlled low strength materials for underground pipe. KSCE J. Civ. Eng. 2013, 17, 674–680. [Google Scholar] [CrossRef]
- Sun, C.; Xiang, J.; Xu, M.; He, Y.; Tong, Z.; Cui, X. 3D extrusion free forming of geopolymer composites: Materials modification and processing optimization. J. Clean. Prod. 2020, 258, 120986. [Google Scholar] [CrossRef]
- Tran, M.V.; Vu, T.H.; Nguyen, T.H.Y. Simplified assessment for one-part 3D-printable geopolymer concrete based on slump and slump flow measurements. Case Stud. Constr. Mater. 2023, 18, e01889. [Google Scholar] [CrossRef]
- Hamed, N.; El-Feky, M.S.; Kohail, M.; Nasr, E.A.R. Effect of nano-clay de-agglomeration on mechanical properties of concrete. Constr. Build. Mater. 2019, 205, 245–256. [Google Scholar] [CrossRef]
- Ravitheja, A.; Kumar, N.L.N.K. A study on the effect of nano clay and GGBS on the strength properties of fly ash based geopolymers. Mater. Today Proc. 2019, 19, 273–276. [Google Scholar] [CrossRef]
- Dai, X.; Tao, Y.; Van Tittelboom, K.; De Schutter, G. Rheological and mechanical properties of 3D printable alkali-activated slag mixtures with addition of nano clay. Cem. Concr. Compos. 2023, 139, 104995. [Google Scholar] [CrossRef]
- Gadkar, A.; Subramaniam, K.V.L. Rheology control of alkali-activated fly ash with nano clay for cellular geopolymer application. Constr. Build. Mater. 2021, 283, 122687. [Google Scholar] [CrossRef]
- Rahul, A.V.; Santhanam, M.; Meena, H.; Ghani, Z. 3D printable concrete: Mixture design and test methods. Cem. Concr. Compos. 2019, 97, 13–23. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos. Part B Eng. 2019, 176, 107290. [Google Scholar] [CrossRef]
- Panda, B.; Paul, S.C.; Mohamed, N.A.N.; Tay, Y.W.D.; Tan, M.J. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement 2018, 113, 108–116. [Google Scholar] [CrossRef]
- Panda, B.; Tan, M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram. Int. 2018, 44, 10258–10265. [Google Scholar] [CrossRef]
- Ma, G.; Li, Z.; Wang, L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr. Build. Mater. 2018, 162, 613–627. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, K.; Jia, Z.; Gao, Y.; Zhang, Z.; Zhang, Y. Extending applicability of 3D-printable geopolymer to large-scale printing scenario via combination of sodium carbonate and nano-silica. Cem. Concr. Compos. 2024, 145, 105322. [Google Scholar] [CrossRef]
- Jindal, B.B.; Sharma, R. The effect of nanomaterials on properties of geopolymers derived from industrial by-products: A state-of-the-art review. Constr. Build. Mater. 2020, 252, 119028. [Google Scholar] [CrossRef]
- Kazemian, A.; Yuan, X.; Cochran, E.; Khoshnevis, B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Constr. Build. Mater. 2017, 145, 639–647. [Google Scholar] [CrossRef]
- Guo, X.; Yang, J.; Xiong, G. Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer. Cem. Concr. Compos. 2020, 114, 103820. [Google Scholar] [CrossRef]
- Bong, S.H.; Xia, M.; Nematollahi, B.; Shi, C. Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications. Cem. Concr. Compos. 2021, 121, 104060. [Google Scholar] [CrossRef]
- Chougan, M.; Ghaffar, S.H.; Jahanzat, M.; Albar, A.; Mujaddedi, N.; Swash, R. The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites. Constr. Build. Mater. 2020, 250, 118928. [Google Scholar] [CrossRef]
- Assaedi, H.; Shaikh, F.U.A.; Low, I.M. Effect of nano-clay on mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc. 2016, 4, 19–28. [Google Scholar] [CrossRef]
- Zawrah, M.F.; Sawan, S.E.A. Hardened and fired geopolymer mortars fabricated from Cyclone’s waste clay and submicron sand: A comparative study. Constr. Build. Mater. 2023, 364, 129998. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Ramakrishnan, S.; Sanjayan, J. Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete. Cem. Concr. Compos. 2021, 116, 103899. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Bos, F.P.; Perrot, A.; Da Silva, W.R.L.; Nerella, V.N.; Fataei, S.; Wolfs, R.J.M.; Sonebi, M.; Roussel, N. Extrusion-based additive manufacturing with cement-based materials—Production steps, processes, and their underlying physics: A review. Cem. Concr. Res. 2020, 132, 106037. [Google Scholar] [CrossRef]
Component | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | MnO | SO3 | TiO2 | K2O | Na2O |
---|---|---|---|---|---|---|---|---|---|---|
FA | 43.3 | 3.64 | 44.9 | 3.27 | 0.34 | 0.02 | 0.80 | 2.07 | 0.79 | / |
GGBS | 28.6 | 41.0 | 14.30 | 0.49 | 9.36 | 0.32 | 2.70 | 1.94 | 0.42 | 0.56 |
RS | 57.4 | 10.7 | 15.7 | 4.11 | 1.84 | 0.23 | 0.81 | 0.92 | 4.89 | 2.96 |
Mix Group | Soild | Activator (g/1000 g Binder) | Water/Solid Mass Ratio (g/g) | Sand/Solid Mass Ratio (g/g) | Additive (g/1000 g Binder) | |||
---|---|---|---|---|---|---|---|---|
Binder | RS | Na2SiO3 | NaOH | Water Reducer | ||||
FA (in g) | GGBS (in g) | |||||||
RS-0 | 800 | 200 | 0 | 266.1 | 35.2 | 0.42 | 1.0 | 10 |
RS-10 | 800 | 200 | 100 | 266.1 | 35.2 | 0.42 | 1.0 | 10 |
RS-30 | 800 | 200 | 300 | 266.1 | 35.2 | 0.42 | 1.0 | 10 |
RS-50 | 800 | 200 | 500 | 266.1 | 35.2 | 0.42 | 1.0 | 10 |
RS-70 | 800 | 200 | 700 | 266.1 | 35.2 | 0.42 | 1.0 | 10 |
RS-90 | 800 | 200 | 900 | 266.1 | 35.2 | 0.42 | 1.0 | 10 |
RS-110 | 800 | 200 | 1100 | 266.1 | 35.2 | 0.42 | 1.0 | 10 |
Specimen | Fitting Model | (Pa) | (Pa·s) | R2 |
---|---|---|---|---|
RS-0 | .73 | 131.9 | 5.73 | 0.997 |
RS-10 | .67 | 169.2 | 6.67 | 0.999 |
RS-30 | .98 | 228.9 | 7.98 | 0.996 |
RS-50 | 0.32 | 273.5 | 10.32 | 0.997 |
RS-70 | 0.49 | 364.3 | 10.49 | 0.996 |
RS-90 | .58 | 479.6 | 8.58 | 0.997 |
RS-110 | 0.12 | 504.6 | 10.12 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Geng, J.; Jin, C.; Liu, G.; Xia, Z. Influence of Residue Soil on the Properties of Fly Ash–Slag-Based Geopolymer Materials for 3D Printing. Materials 2024, 17, 2992. https://doi.org/10.3390/ma17122992
Zhou Z, Geng J, Jin C, Liu G, Xia Z. Influence of Residue Soil on the Properties of Fly Ash–Slag-Based Geopolymer Materials for 3D Printing. Materials. 2024; 17(12):2992. https://doi.org/10.3390/ma17122992
Chicago/Turabian StyleZhou, Zhijie, Jian Geng, Chen Jin, Genjin Liu, and Zhenjiang Xia. 2024. "Influence of Residue Soil on the Properties of Fly Ash–Slag-Based Geopolymer Materials for 3D Printing" Materials 17, no. 12: 2992. https://doi.org/10.3390/ma17122992
APA StyleZhou, Z., Geng, J., Jin, C., Liu, G., & Xia, Z. (2024). Influence of Residue Soil on the Properties of Fly Ash–Slag-Based Geopolymer Materials for 3D Printing. Materials, 17(12), 2992. https://doi.org/10.3390/ma17122992