An Improved Ordinary State-Based Peridynamic Model for Granular Fractures in Cubic Crystals and the Effects of Crystal Orientations on Crack Propagation
Abstract
:1. Introduction
2. Fundamentals of the OSB-PD Theory
3. OSB-PD Theory for Cubic Crystals and PD Material
3.1. Coordinate Transformation
3.2. PD Material Parameters and Force Density Vectors
3.3. Surface Correction and Volume Correction
3.4. Damage Model
4. Model Validation and Convergence Analysis
4.1. Static Analysis for the Fe Single Crystal with Different Orientations
4.2. Static Analysis for Polycrystalline Materials
4.3. Convergence Analysis of Dynamic Fracture of Polycrystalline Materials
5. Applications on Dynamic Fractures
5.1. Single-Crystal Materials with Different Notch Shapes and Sizes
5.2. Effects of Anisotropy Degree in Polycrystalline Materials
6. Conclusions
- (1)
- The periodic characteristics of the equivalent elastic modulus of cubic crystals are introduced into the PD parameters to achieve the simulation of arbitrary crystal orientations.
- (2)
- Convergence analysis is carried out in static and dynamic problems to obtain a proper density of material points in one horizon region (m value) and horizon size (δ value) to ensure computational effectiveness and accuracy. For a static problem, the m value has a greater effect on convergence than the δ value, while for a dynamic fracture problem, the δ value influences the crack propagation path more than the m value, especially in the intergranular fracture mode.
- (3)
- For convergence analysis on dynamic problems, a regulating strategy to obtain the converged and accurate results of crack propagation paths is proposed as follows: select an appropriate horizon size first and then increase the m value until the accuracy is satisfied.
- (4)
- In the numerical examples, the influence of crystal orientation on single-crystal materials with different notch shapes and sizes is mainly reflected in bifurcations, numbers, and propagation path directions of cracks. Under biaxial tensile loading, the single crystal with a semi-circular notch is more resistant to fracture than the crystal with square or triangular notches in most cases.
- (5)
- For polycrystalline materials, the decrease in the degree of grain anisotropy reduces microcracks in intergranular fracture and the crack propagation rate in transgranular fracture.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of the PD Material Parameters for Cubic Crystals
- First Loading—Uniaxial tensile in the direction of crystal orientation: .
- Second Loading—Simple shear: .
- Third loading—biaxial tensile: .
Appendix B. Surface Correction Factors
References
- Emdadi, A.; Zaeem, M.A. Phase-field modeling of crack propagation in polycrystalline materials. Comput. Mater. Sci. 2021, 186, 110057. [Google Scholar] [CrossRef]
- Hosford, W.F. The Mechanics of Crystals and Textured Polycrystals; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Li, X.; Kasai, T.; Nakao, S.; Ando, T.; Shikida, M.; Sato, K.; Tanaka, H. Anisotropy in fracture of single crystal silicon film characterized under uniaxial tensile condition. Sens. Actuators A Phys. 2005, 117, 143–150. [Google Scholar] [CrossRef]
- Ando, T.; Li, X.; Nakao, S.; Kasai, T.; Shikida, M.; Sato, K. Effect of crystal orientation on fracture strength and fracture toughness of single crystal silicon. In Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, Maastricht, The Netherlands, 25–29 January 2004; IEEE: Maastricht, Netherlands, 2004; pp. 177–180. [Google Scholar]
- Kestens, L.A.I.; Pirgazi, H. Texture formation in metal alloys with cubic crystal structures. Mater. Sci. Technol. 2016, 32, 1303–1315. [Google Scholar] [CrossRef]
- Ohring, M. Materials Science of Thin Films: Depositon and Structure, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Hoagland, R.G.; Hahn, G.T.; Rosenfield, A.R. Influence of microstructure on fracture propagation in rock. Rock Mech. 1973, 5, 77–106. [Google Scholar] [CrossRef]
- Lai, Q.; Chen, Z.; Wei, Y.; Lu, Q.; Ma, Y.; Wang, J.; Fan, G. Towards the understanding of fracture resistance of an ultrahigh-strength martensitic press-hardened steel. J. Mater. Res. Technol. 2023, 27, 1996–2006. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Feng, H.; Chen, H.; Yu, X.; Liu, B. Could effective fracture toughness of polycrystalline aggregates exceed inner grain fracture toughness by adjusting toughness of grain boundary? Eng. Fract. Mech. 2023, 282, 109170. [Google Scholar] [CrossRef]
- Qian, J.; Li, S. Application of Multiscale Cohesive Zone Model to Simulate Fracture in Polycrystalline Solids. J. Eng. Mater. Technol. 2011, 133, 011010. [Google Scholar] [CrossRef]
- Fan, H.; Li, S. Multiscale cohesive zone modeling of crack propagations in polycrystalline solids. GAMM-Mitteilungen 2015, 38, 268–284. [Google Scholar] [CrossRef]
- Simonovski, I.; Cizelj, L. Cohesive zone modeling of intergranular cracking in polycrystalline aggregates. Nucl. Eng. Des. 2015, 283, 139–147. [Google Scholar] [CrossRef]
- Sukumar, N.; Srolovitz, D.; Baker, T.; Prevost, J.H. Brittle fracture in polycrystalline microstructures with the extended finite element method. Int. J. Numer. Methods Eng. 2003, 56, 2015–2037. [Google Scholar] [CrossRef]
- Prakash, C.; Lee, H.; Alucozai, M.; Tomar, V. An analysis of the influence of grain boundary strength on microstructure dependent fracture in polycrystalline tungsten. Int. J. Fract. 2016, 199, 1–20. [Google Scholar] [CrossRef]
- Mao, J.; Xu, Y.; Hu, D.; Liu, X.; Pan, J.; Sun, H.; Wang, R. Microstructurally short crack growth simulation combining crystal plasticity with extended finite element method. Eng. Fract. Mech. 2022, 275, 108786. [Google Scholar] [CrossRef]
- Geraci, G.; Aliabadi, M. Micromechanical boundary element modelling of transgranular and intergranular cohesive cracking in polycrystalline materials. Eng. Fract. Mech. 2017, 176, 351–374. [Google Scholar] [CrossRef]
- Galvis, A.; Sollero, P. Boundary element analysis of crack problems in polycrystalline materials. Procedia Mater. Sci. 2014, 3, 1928–1933. [Google Scholar] [CrossRef]
- Benedetti, I.; Aliabadi, M. Multiscale modeling of polycrystalline materials: A boundary element approach to material degradation and fracture. Comput. Methods Appl. Mech. Eng. 2015, 289, 429–453. [Google Scholar] [CrossRef]
- Clayton, J.; Knap, J. Phase field modeling of directional fracture in anisotropic polycrystals. Comput. Mater. Sci. 2015, 98, 158–169. [Google Scholar] [CrossRef]
- Zhang, S.; Kim, D.-U.; Jiang, W.; Tonks, M.R. A phase field model of crack propagation in anisotropic brittle materials with preferred fracture planes. Comput. Mater. Sci. 2021, 193, 110400. [Google Scholar] [CrossRef]
- Lu, W.; Li, M.; Vazic, B.; Oterkus, S.; Oterkus, E.; Wang, Q. Peridynamic modelling of fracture in polycrystalline ice. J. Mech. 2020, 36, 223–234. [Google Scholar] [CrossRef]
- Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 2000, 48, 175–209. [Google Scholar] [CrossRef]
- De Meo, D.; Zhu, N.; Oterkus, E. Peridynamic Modeling of Granular Fracture in Polycrystalline Materials. J. Eng. Mater. Technol. 2016, 138, 041008. [Google Scholar] [CrossRef]
- Hu, W.; Ha, Y.D.; Bobaru, F. Modeling dynamic fracture and damage in a fiber-reinforced composite lamina with peridynamics. Int. J. Multiscale Comput. Eng. 2011, 9, 707–726. [Google Scholar] [CrossRef]
- Li, M.; Lu, W.; Oterkus, E.; Oterkus, S. Thermally-induced fracture analysis of polycrystalline materials by using peridynamics. Eng. Anal. Bound. Elem. 2020, 117, 167–187. [Google Scholar] [CrossRef]
- Erdogan Madenci, E.O. Peridynamic Theory and Its Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Zhu, N.; De Meo, D.; Oterkus, E. Modelling of granular fracture in polycrystalline materials using ordinary state-based peridynamics. Materials 2016, 9, 977. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, C.; Wang, Q.; Zhang, Y.; Jing, C.; Han, D. Peridynamic modeling of polycrystalline S2 ice and its applications. Eng. Fract. Mech. 2023, 277, 108941. [Google Scholar] [CrossRef]
- Zhang, T.; Gu, T.; Jiang, J.; Zhang, J.; Zhou, X. An ordinary state-based peridynamic model for granular fracture in polycrystalline materials with arbitrary orientations in cubic crystals. Eng. Fract. Mech. 2024, 301, 110023. [Google Scholar] [CrossRef]
- Liu, X.; He, X.; Sun, L.; Wang, J.; Yang, D.; Shi, X. A chirality-dependent peridynamic model for the fracture analysis of graphene sheets. Mech. Mater. 2020, 149, 103535. [Google Scholar] [CrossRef]
- Chen, Z.; Woody Ju, J.; Su, G.; Huang, X.; Li, S.; Zhai, L. Influence of micro-modulus functions on peridynamics simulation of crack propagation and branching in brittle materials. Eng. Fract. Mech. 2019, 216, 106498. [Google Scholar] [CrossRef]
- Madenci, E.; Oterkus, S. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J. Mech. Phys. Solids 2016, 86, 192–219. [Google Scholar] [CrossRef]
- Rimoli, J.; Ortiz, M. A three-dimensional multiscale model of intergranular hydrogen-assisted cracking. Philos. Mag. 2010, 90, 2939–2963. [Google Scholar] [CrossRef]
- Jabbari, M.; Akbardoost, J.; Torabi, A. Size Effect on Mode I Fracture Resistance of Polymeric Rounded-Tip V-Notched Specimens Using the Modified Point Stress Criterion. J. Eng. Mech. 2022, 148, 04022030. [Google Scholar] [CrossRef]
- Li, S.; Lu, H.; Huang, X.; Qin, R.; Mao, J. Sensitivity analysis of notch shape on brittle failure by using uni-bond dual-parameter peridynamics. Eng. Fract. Mech. 2023, 291, 109566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Peng, Y.; Wang, K.; Yao, S.; Gong, S. An Improved Ordinary State-Based Peridynamic Model for Granular Fractures in Cubic Crystals and the Effects of Crystal Orientations on Crack Propagation. Materials 2024, 17, 3196. https://doi.org/10.3390/ma17133196
Gong Y, Peng Y, Wang K, Yao S, Gong S. An Improved Ordinary State-Based Peridynamic Model for Granular Fractures in Cubic Crystals and the Effects of Crystal Orientations on Crack Propagation. Materials. 2024; 17(13):3196. https://doi.org/10.3390/ma17133196
Chicago/Turabian StyleGong, Yajing, Yong Peng, Kui Wang, Song Yao, and Shuguang Gong. 2024. "An Improved Ordinary State-Based Peridynamic Model for Granular Fractures in Cubic Crystals and the Effects of Crystal Orientations on Crack Propagation" Materials 17, no. 13: 3196. https://doi.org/10.3390/ma17133196
APA StyleGong, Y., Peng, Y., Wang, K., Yao, S., & Gong, S. (2024). An Improved Ordinary State-Based Peridynamic Model for Granular Fractures in Cubic Crystals and the Effects of Crystal Orientations on Crack Propagation. Materials, 17(13), 3196. https://doi.org/10.3390/ma17133196