Energy Absorption and Failure Modes of Different Composite Open-Section Crush Elements under Axial Crushing Loading
Abstract
:1. Introduction
2. Experimental Testing
2.1. Specimen Description
2.2. Testing Setup and Procedure
2.3. Crashworthiness Evaluation Criterion
- (1)
- Initial peak force Fp: The maximum force during the crushing process, and Fp should be controlled within an allowable range to avoid transmitting excessive loads to passengers.
- (2)
- Average crushing force Facf: The average crushing force during Stage II can be expressed as
- (3)
- Crushing force efficiency CFE: The crushing force efficiency is defined as the ratio of the averaged load during the plateau stage to the initial peak force, which represents the load uniformity of an energy-absorbing material. It can be given by
- (4)
- Specific energy absorption SEA: It is the most significant evaluation criterion to compare the energy absorption capacity of different energy-absorbing materials, which is defined as the energy absorbed per unit mass of a structure, and it can be given by
3. Numerical Modeling
3.1. Finite Element Modeling
3.2. Material Damage Modeling
- (1)
- Intralaminar properties
- (2)
- Interlaminar properties
4. Results
5. Discussions
5.1. The Effect of the Cross-Section Configuration
5.2. The Effect of the Cross-Section Aspect Ratio
5.3. Trigger Mechanism
5.4. Impact Velocity
6. Conclusions
- (1)
- For the composite thin-walled open-section structures with different geometric configurations, a brittle failure mode can be observed under different loading rates. The impact kinetic energy is mainly absorbed via material bending, delamination failure, shear failure, and friction between the crushing zone during the crushing.
- (2)
- The cross-section configuration significantly influences the energy absorption characteristics of composite thin-walled open-section structures. The insufficient material damage caused by stress concentration is the main reason for the low energy absorption efficiency of C1-shaped specimens compared to the hat-shaped and Ω-shaped specimens.
- (3)
- Different triggering mechanisms primarily affect the initial crushing stage of the composite structures, while it has little influence on the stable crushing stage. For C-shaped specimens, a 45° chamfer trigger yields better energy absorption. However, the 15° steeple trigger is the optimal triggering mode for the hat-shaped structures.
- (4)
- The average crushing force and specific energy absorption of composite thin-walled structures decrease with an increasing in loading rates. More material fragments can be ejected under higher loading rates, which reduces the structural load-bearing area, material utilization, and frictional energy absorption in the crushing zone.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhong, M.; Khan, T.K.H.; Devade, K.; Krishna, B.V.; Sura, S.; Eftikhaar, H.K.; Thethi, H.P.; Gupta, N. Review of composite materials and applications. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Mania, R.; Kowal-Michalska, K. Behaviour of composite columns of closed cross-section under in-plane compressive pulse loading. Thin-Walled Struct. 2007, 45, 902–905. [Google Scholar] [CrossRef]
- Krolak, M.; Kowal-Michalska, K.; Mania, R.; Swiniarski, J. Experimental tests of stability and load carrying capacity of compressed thin-walled multi-cell columns of triangular cross-section. Thin-Walled Struct. 2007, 45, 883–887. [Google Scholar] [CrossRef]
- Yang, X.F.; Ma, J.X.; Wen, D.S.; Yang, J.L. Crashworthy design and energy absorption mechanisms for helicopter structures: A systematic literature review. Prog. Aerosp. Sci. 2020, 114, 100618. [Google Scholar] [CrossRef]
- Ha, N.S.; Lu, G. Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics. Thin-Walled Struct. 2020, 157, 106995. [Google Scholar] [CrossRef]
- Sebaey, T.A. Crashworthiness of GFRP composite tubes after aggressive environmental aging in seawater and soil. Compos. Struct. 2022, 284, 115105. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Y.; Meng, M.; Li, B.; Sun, X.; Yang, B.; Xiao, S.; Wang, T. Dynamic axial crushing behaviors of circular composite tubes with different reinforcing fibers and triggers. Int. J. Mech. Sci. 2023, 244, 108083. [Google Scholar] [CrossRef]
- Batuwitage, C.; Fawzia, S.; Thambiratnam, D.; Liu, X.; Al-Mahaidi, R.; Elchalakani, M. Impact behaviour of carbon fibre reinforced polymer (CFRP) strengthened square hollow steel tubes: A numerical simulation. Thin-Walled Struct. 2018, 131, 245–257. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Manolakos, D.E.; Ioannidis, M.B.; Papapostolou, D.P. Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: Experimental. Compos. Struct. 2004, 63, 347–360. [Google Scholar] [CrossRef]
- Chen, D.; Sun, G.; Jin, X.; Li, Q. Quasi-static bending and transverse crushing behaviors for hat-shaped composite tubes made of CFRP, GFRP and their hybrid structures. Compos. Struct. 2020, 239, 111842. [Google Scholar] [CrossRef]
- Chen, D.; Sun, X.; Xiao, S.; Yang, G.; Yang, B.; Zhu, T.; Wang, M. On axial crushing behavior of double hat-shaped CFRP and GFRP structures. Compos. Struct. 2023, 319, 117117. [Google Scholar] [CrossRef]
- Zhu, G.; Sun, G.; Li, G.; Cheng, A.; Li, Q. Modeling for CFRP structures subjected to quasi-static crushing. Compos. Struct. 2018, 184, 41–55. [Google Scholar] [CrossRef]
- Bao, F.; Wang, J.; Wang, J.; Zeng, S.; Guo, X. Static and impact responses of syntactic foam composites reinforced by multi-walled carbon nanotubes. J. Mater. Res. Technol. 2020, 9, 12391–12403. [Google Scholar] [CrossRef]
- Yang, H.; Lei, H.; Lu, G. Crashworthiness of circular fiber reinforced plastic tubes filled with composite skeletons/aluminum foam under drop-weight impact loading. Thin-Walled Struct. 2021, 160, 107380. [Google Scholar] [CrossRef]
- Chen, D.; Luo, Q.; Meng, M.; Li, Q.; Sun, G. Low velocity impact behavior of interlayer hybrid composite laminates with carbon/glass/basalt fibres. Compos. Part B Eng. 2019, 176, 107191. [Google Scholar] [CrossRef]
- Yang, H.; Lei, H.; Lu, G.; Zhang, Z.; Li, X.; Liu, Y. Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression. Compos. Part B Eng. 2020, 198, 108217. [Google Scholar] [CrossRef]
- Zhu, G.; Liao, J.; Sun, G.; Li, Q. Comparative study on metal/CFRP hybrid structures under static and dynamic loading. Int. J. Impact Eng. 2020, 141, 103509. [Google Scholar] [CrossRef]
- Reuter, C.; Tröster, T. Crashworthiness and numerical simulation of hybrid aluminium-CFRP tubes under axial impact. Thin-Walled Struct. 2017, 117, 1–9. [Google Scholar] [CrossRef]
- Siromani, D.; Henderson, G.; Mikita, D.; Mirarchi, K.; Park, R.; Smolko, J.; Awerbuch, J.; Tan, T.-M. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression. Compos. Part A Appl. Sci. Manuf. 2014, 64, 25–35. [Google Scholar] [CrossRef]
- Sigalas, I.; Kumosa, M.; Hull, D. Trigger mechanisms in energy-absorbing glass cloth/epoxy tubes. Compos. Sci. Technol. 1991, 40, 265–287. [Google Scholar] [CrossRef]
- Hull, D. A unified approach to progressive crushing of fibre-reinforced composite tubes. Compos. Sci. Technol. 1991, 40, 377–421. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, H.; Liu, Z. Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes. Int. J. Mech. Sci. 2019, 157–158, 1–12. [Google Scholar] [CrossRef]
- Stukhlyak, P.D.; Buketov, A.V.; Panin, S.V.; Maruschak, P.O.; Moroz, K.M.; Poltaranin, M.A.; Vukherer, T.; Kornienko, L.A.; Lyukshin, B.A. Structural fracture scales in shock-loaded epoxy composites. Phys. Mesomech. 2015, 18, 58–74. [Google Scholar] [CrossRef]
- Joosten, M.W.; Dutton, S.; Kelly, D.; Thomson, R. Experimental and numerical investigation of the crushing response of an open section composite energy absorbing element. Compos. Struct. 2011, 93, 682–689. [Google Scholar] [CrossRef]
- Lv, R.; Ren, Y.; Liu, Z.; Jiang, H. Energy Absorption Characteristics and Failure Mechanism of Fabric Composite Channel Section Structure under Axial Crushing Loading. J. Aerosp. Eng. 2022, 35, 04022046. [Google Scholar] [CrossRef]
- Bolukbasi, A.O.; Laananen, D.H. Energy absorption in composite stiffeners. Composites 1995, 26, 291–301. [Google Scholar] [CrossRef]
- Riccio, A.; Raimondo, A.; Di Caprio, F.; Fusco, M.; Sanità, P. Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system. Compos. Part B Eng. 2018, 150, 93–103. [Google Scholar] [CrossRef]
- Jackson, A.; Dutton, S.; Gunnion, A.J.; Kelly, D. Investigation into laminate design of open carbon–fibre/epoxy sections by quasi–static and dynamic crushing. Compos. Struct. 2011, 93, 2646–2654. [Google Scholar] [CrossRef]
- Waimer, M.; Kohlgrüber, D.; Hachenberg, D.; Voggenreiter, H. Experimental study of CFRP components subjected to dynamic crash loads. Compos. Struct. 2013, 105, 288–299. [Google Scholar] [CrossRef]
- Lu, G.T.; Yu, X. Energy Absorption of Structures and Materials; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Zhang, D.; Zheng, X.; Wu, T. Damage characteristics of open-hole laminated composites subjected to longitudinal loads. Compos. Struct. 2019, 230, 111474. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, Y. Crashworthiness and failure analysis of steeple-triggered hat-shaped composite structure under the axial and oblique crushing load. Compos. Struct. 2019, 229, 111375. [Google Scholar] [CrossRef]
Configuration | Triggering Mechanism | Impact Velocity (m/s) | Mass (g) |
---|---|---|---|
C1 | 45° Chamfer trigger | 1.00 | 14.680 |
Hat | 45° Chamfer trigger | 1.00 | 14.678 |
Ω | 45° Chamfer trigger | 1.00 | 14.677 |
C2 | 45° Chamfer trigger | 1.00 | 14.680 |
C3 | 45° Chamfer trigger | 1.00 | 14.680 |
C1 | 15° steeple trigger | 1.00 | 13.507 |
Hat | 15° steeple trigger | 1.00 | 14.029 |
C1 | 45° Chamfer trigger | 0.01 | 14.680 |
C1 | 45° Chamfer trigger | 0.10 | 14.680 |
Hat | 45° Chamfer trigger | 0.01 | 14.678 |
Hat | 45° Chamfer trigger | 0.10 | 14.678 |
Ω | 45° Chamfer trigger | 0.01 | 14.677 |
Ω | 45° Chamfer trigger | 0.10 | 14.677 |
Failure Mode | Equivalent Stress | Equivalent Displacement |
---|---|---|
Fiber tension | ||
Fiber compression | ||
Matrix tension | ||
Matrix compression |
Description | Variable | Value |
---|---|---|
Longitudinal Young modulus | E1 | 171,420 MPa |
Transversal Young modulus | E2 | 9080 MPa |
Principal Poisson’s ratio | v12 | 0.32 |
Shear modulus | G12 | 5290 MPa |
Longitudinal tensile strength | XT | 1773 MPa |
Longitudinal compressive strength | XC | 1264 MPa |
Transversal tensile strength | YT | 62.3 MPa |
Transversal compressive strength | YC | 199.8 MPa |
In-plane shear strength | S12 | 92.3 MPa |
Longitudinal tensile fracture energy | 120 N/mm | |
Longitudinal compressive fracture energy | 100 N/mm | |
Transverse tension fracture energy | 2 N/mm | |
Transverse compression fracture energy | 5 N/mm |
Description | Variable | Value |
---|---|---|
The stiffness in the normal direction | Kn | 1 × 106 N/mm3 |
The stiffness in the first shear direction | Ks | 5 × 105 N/mm3 |
The stiffness in the second shear direction | Kt | 5 × 105 N/mm3 |
The interface strength in the normal direction | 60 MPa | |
The interface strength in the first shear direction | 110 MPa | |
The interface strength in the second shear direction | 110 MPa | |
Mode-I fracture toughness | GIC | 0.2 N/mm |
Mode-II fracture toughness | GIIC, GIIIC | 5 N/mm |
Description | FP (Kn) | FMCF (Kn) |
---|---|---|
C1-Test | 20.14 | 14.36 |
C1-Simulation | 19.53 | 11.90 |
Error | 3.01% | 17.10% |
Hat-Test | 23.38 | 16.13 |
Hat-Simulation | 22.57 | 14.65 |
Error | 3.46% | 9.18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, X.; Xue, P.; Liu, X.; Bai, C.; Zhang, X.; Li, X.; Zhang, C.; Yang, X. Energy Absorption and Failure Modes of Different Composite Open-Section Crush Elements under Axial Crushing Loading. Materials 2024, 17, 3197. https://doi.org/10.3390/ma17133197
Xi X, Xue P, Liu X, Bai C, Zhang X, Li X, Zhang C, Yang X. Energy Absorption and Failure Modes of Different Composite Open-Section Crush Elements under Axial Crushing Loading. Materials. 2024; 17(13):3197. https://doi.org/10.3390/ma17133197
Chicago/Turabian StyleXi, Xulong, Pu Xue, Xiaochuan Liu, Chunyu Bai, Xinyue Zhang, Xiaocheng Li, Chao Zhang, and Xianfeng Yang. 2024. "Energy Absorption and Failure Modes of Different Composite Open-Section Crush Elements under Axial Crushing Loading" Materials 17, no. 13: 3197. https://doi.org/10.3390/ma17133197
APA StyleXi, X., Xue, P., Liu, X., Bai, C., Zhang, X., Li, X., Zhang, C., & Yang, X. (2024). Energy Absorption and Failure Modes of Different Composite Open-Section Crush Elements under Axial Crushing Loading. Materials, 17(13), 3197. https://doi.org/10.3390/ma17133197