The Advancement of Waterjet-Guided Laser Cutting System for Enhanced Surface Quality in AISI 1020 Steel Sheets
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Water-guided laser cutting resulted in a significant reduction in surface roughness compared to conventional laser cutting.
- Laser power was found as a crucial parameter in performing the water-guided laser cutting process, and cutting of AISI 1040 material did not occur at powers below 400 W. Furthermore, laser power was observed to significantly impact surface quality in both cutting methods, generally having a detrimental effect on cutting quality.
- Cutting speed was identified as another influential parameter, exhibiting different behaviors based on material thickness. A decrease in surface roughness was observed with increasing cutting speed for material thicknesses between 1.5 mm and 2.5 mm, whereas an increase in surface roughness was noted for a material thickness of 3 mm with higher cutting speeds.
- Macro and surface topography analyses revealed that water-guided laser cutting substantially reduced burr formation compared to conventional laser cutting.
- SEM images indicated that water-guided laser cutting produced a smaller white layer formation and notable improvements in surface waviness compared to conventional laser cutting. Additionally, the microstructure of the cutting surface was more regular and finer in structure.
- An ANOVA analysis was conducted based on the surface roughness obtained in the study for the water-guided laser cutting process. The statistical analysis provided insights into the effects of cutting parameters and material thickness on surface roughness.
- The study also concluded that fiber lasers, due to their high wavelength, can be effectively utilized for water-guided laser cutting processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nair, A.; Kumanan, S.; Prakash, C.; Mohan, D.G.; Sxena, K.K.; Kumar, S.; Kumar, G. Research developments and technological advancements in conventional and non-conventional machining of superalloys—A review. J. Adhes. Sci. Technol. 2023, 37, 3053–3124. [Google Scholar] [CrossRef]
- Lamikiz, A.; de Lacalle, L.N.L.; Sanchez, J.A.; Del Pozo, D.; Etayo, J.M.; Lopez, J.M. CO2 laser cutting of advanced high strength steels (AHSS). Appl. Surf. Sci. 2005, 242, 362–368. [Google Scholar] [CrossRef]
- Dubey, A.K.; Yadava, V. Experimental study of Nd: YAG laser beam machining—An overview. J. Mater. Process. Technol. 2008, 195, 15–26. [Google Scholar] [CrossRef]
- Jia, X.; Chen, Y.; Liu, L.; Wang, C.; Duan, J. Advances in laser drilling of structural ceramics. Nanomaterials 2022, 12, 230. [Google Scholar] [CrossRef] [PubMed]
- Madić, M.; Mladenović, S.; Gostimirović, M.; Radovanović, M.; Janković, P. Laser cutting optimization model with constraints: Maximization of material removal rate in CO2 laser cutting of mild steel. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 1323–1332. [Google Scholar] [CrossRef]
- Xu, J.; Jing, C.; Jiao, J.; Sun, S.; Sheng, L.; Zhang, Y.; Xia, H.; Zeng, K. Experimental Study on Carbon Fiber-Reinforced Composites Cutting with Nanosecond Laser. Materials 2022, 15, 6686. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zeng, K.; Zhong, L.; Shen, J.; Li, L. Hybrid micro-milling assisted with laser oxidation based on the hardness reduction that caused by cemented carbide oxidation. Ceram. Int. 2021, 47, 35144–35151. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, J.; Sharma, S.; Sharma, A.; Chohan, J.S. Process parameter optimization in laser cutting of Coir fiber reinforced Epoxy composite—A review. Mater. Today: Proc. 2022, 48, 1021–1027. [Google Scholar] [CrossRef]
- Jackson, M.J.; O’neill, W. Laser micro-drilling of tool steel using Nd: YAG lasers. J. Mater. Process. Technol. 2003, 142, 517–525. [Google Scholar] [CrossRef]
- Yilbaş, B.S.; Sahin, A.Z. Oxygen assisted laser cutting mechanism-a laminar boundary layer approach including the combustion process. Opt. Laser Technol. 1995, 7, 175–184. [Google Scholar] [CrossRef]
- Alsaadawy, M.; Dewidar, M.; Said, A.; Maher, I.; Shehabeldeen, T.A. A comprehensive review of studying the influence of laser cutting parameters on surface and kerf quality of metals. Int. J. Adv. Manuf. Technol. 2024, 30, 1039–1074. [Google Scholar] [CrossRef]
- Naresh; Khatak, P. Laser cutting technique: A literature review. Mater. Today: Proc. 2022, 6, 2484–2489. [Google Scholar] [CrossRef]
- Tangwarodomnukun, V.; Wang, J.; Huang, C.Z.; Zhu, H.T. An investigation of hybrid laser–waterjet ablation of silicon substrates. Int. J. Mach. Tools Manuf. 2012, 6, 39–49. [Google Scholar] [CrossRef]
- Richerzhagen, B.; Kutsuna, M.; Okada, H.; Ikeda, T. Waterjet-guided laser processing. In Proceedings of the LAMP 2002: International Congress on Laser Advanced Materials Processing, Osaka, Japan, 27–31 May 2002. [Google Scholar] [CrossRef]
- Ikeda, T.; Ozawa, K.; Kutsuna, M.; Okada, H. Water-jet-guided laser processing for wafer. Weld. World 2003, 7, 3–6. [Google Scholar] [CrossRef]
- Porter, J.A.; Louhisalmi, Y.A.; Karjalainen, J.A.; Füger, S. Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence. Int. J. Adv. Manuf. Technol. 2007, 33, 961–967. [Google Scholar] [CrossRef]
- Mullick, S.; Madhukar, Y.K.; Roy, S.; Kumar, S.; Shukla, D.K.; Nath, A.K. Development and parametric study of a water-jet assisted underwater laser cutting process. Int. J. Mach. Tools Manuf. 2013, 68, 48–55. [Google Scholar] [CrossRef]
- Qiao, H.; Cao, Z.; Cui, J.; Zhao, J. Experimental study on water jet guided laser micro-machining of mono-crystalline silicon. Opt. Laser Technol. 2021, 140, 107057. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, M.; Zhang, T.; Qiao, H.; Li, H. Overview on the development and critical issues of water jet guided laser machining technology. Opt. Laser Technol. 2021, 37, 106820. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, Y.; Zhao, D.; Meng, S.; Cao, C.; Liu, G.; Liu, Q.; Zhang, G. Multi-focus water-jet guided laser: For improving efficiency in cutting superalloys. J. Manuf. Process. 2024, 119, 729–743. [Google Scholar] [CrossRef]
- Marimuthu, S.; Smith, B. Water-jet guided laser drilling of thermal barrier coated aerospace alloy. Int. J. Adv. Manuf. Technol. 2021, 13, 177–191. [Google Scholar] [CrossRef]
- Bektas, E.; Subasi, L.; Gunaydin, A.; Diboine, J.; Ozaner, O.C.; Canadinc, D. Water Jet Guided Laser vs. Conventional Laser: Experimental Comparison of Surface Integrity for Different Aerospace Alloys. J. Laser Micro/Nanoeng. 2021, 16, 1–7. [Google Scholar] [CrossRef]
- Subasi, L.; Gökler, M.I.; Yaman, U. A comprehensive study on water jet guided laser micro hole drilling of an aerospace alloy. Opt. Laser Technol. 2023, 164, 109514. [Google Scholar] [CrossRef]
- Perrottet, D.; Boillat, C.; Amorosi, S.; Richerzhagen, B. PV processing: Improved PV-cell scribing using water jet guided laser. Refocus 2005, 6, 36–37. [Google Scholar] [CrossRef]
- Shaowei, F.; Wei, S.K.; Fang, C.; Leong, K.S. In-situ measurement of surface roughness using chromatic confocal sensor. Procedia CIRP 2020, 94, 780–784. [Google Scholar] [CrossRef]
- Genna, S.; Menna, E.; Rubino, G.; Tagliaferri, V. Experimental investigation of industrial laser cutting: The effect of the material selection and the process parameters on the kerf quality. Appl. Sci. 2020, 10, 4956. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, Y.; Zhao, D.; Liu, Q.; Meng, J.; Cao, C.; Zheng, Z.; Li, Z.; Yu, H. Modeling and Prediction of Water-Jet-Guided Laser Cutting Depth for Inconel 718 Material Using Response Surface Methodology. Micromachines 2023, 14, 234. [Google Scholar] [CrossRef]
1.5 mm | 2 mm | 2.5 mm | 3 mm | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ra (µm) | Ra (µm) | Ra (µm) | Ra (µm) | |||||||
Exp. No | Cutting Speed [mm/min] | Laser Power [W] | L | WGL | L | WGL | L | WGL | L | WGL |
1 | 15 | 400 | 3.365 | 1.045 | 3.525 | 2.047 | ||||
2 | 15 | 500 | 4.292 | 1.342 | 3.905 | 2.645 | ||||
3 | 15 | 600 | 5.532 | 1.707 | 5.245 | 2.665 | 3.685 | 1.752 | ||
4 | 15 | 700 | 2.951 | 1.773 | 5.575 | 2.962 | 3.791 | 1.965 | 4.161 | 2.160 |
5 | 15 | 800 | 3.552 | 1.342 | 3.855 | 2.284 | 3.767 | 2.172 | 4.082 | 2.157 |
6 | 15 | 900 | 3.927 | 1.912 | 4.337 | 3.694 | 5.421 | 2.152 | 4.651 | 2.705 |
7 | 15 | 1000 | 3.432 | 2.035 | 3.482 | 2.205 | 3.855 | 2.835 | 4.480 | 3.467 |
8 | 20 | 400 | 3.573 | 1.007 | 4.365 | 1.392 | ||||
9 | 20 | 500 | 3.542 | 1.252 | 4.907 | 2.062 | ||||
10 | 20 | 600 | 5.025 | 1.647 | 4.502 | 2.105 | 3.867 | 1.210 | ||
11 | 20 | 700 | 5.195 | 1.165 | 4.165 | 2.414 | 4.205 | 1.930 | 6.107 | 2.082 |
12 | 20 | 800 | 5.337 | 2.054 | 6.035 | 3.212 | 4.857 | 2.137 | 5.362 | 2.187 |
13 | 20 | 900 | 3.545 | 1.685 | 4.957 | 3.572 | 4.347 | 2.981 | 4.627 | 2.685 |
14 | 20 | 1000 | 4.213 | 1.992 | 4.777 | 2.614 | 4.912 | 2.281 | 4.085 | 3.391 |
15 | 25 | 400 | 3.932 | 0.937 | ||||||
16 | 25 | 500 | 2.785 | 1.225 | 4.965 | 1.192 | ||||
17 | 25 | 600 | 2.702 | 1.265 | 5.197 | 0.965 | 3.732 | 1.377 | ||
18 | 25 | 700 | 3.312 | 1.517 | 4.832 | 0.911 | 3.705 | 2.202 | ||
19 | 25 | 800 | 2.922 | 1.802 | 4.325 | 0.665 | 3.844 | 2.802 | 3.130 | 2.072 |
20 | 25 | 900 | 4.558 | 1.525 | 3.654 | 0.835 | 2.917 | 1.875 | 3.072 | 2.692 |
21 | 25 | 1000 | 5.515 | 1.972 | 5.757 | 1.647 | 3.052 | 2.945 | 3.591 | 3.297 |
22 | 30 | 400 | ||||||||
23 | 30 | 500 | 3.187 | 1.017 | ||||||
24 | 30 | 600 | 3.335 | 1.095 | 1.735 | 0.630 | 3.935 | 2.472 | ||
25 | 30 | 700 | 3.054 | 2.002 | 1.965 | 1.227 | 3.645 | 2.150 | ||
26 | 30 | 800 | 3.457 | 2.057 | 2.872 | 0.965 | 3.515 | 3.112 | 4.122 | 1.990 |
27 | 30 | 900 | 3.612 | 2.092 | 2.332 | 1.037 | 4.297 | 2.610 | 4.502 | 2.602 |
28 | 30 | 1000 | 3.182 | 1.817 | 3.127 | 0.812 | 3.642 | 2.422 | 3.460 | 3.242 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 28.06 | 19 | 1.48 | 5.38 | <0.0001 | significant |
A-Material Thickness | 0.3770 | 1 | 0.3770 | 1.37 | 0.2455 | |
B-Cutting Speed | 3.10 | 1 | 3.10 | 11.28 | 0.0013 | |
C-Laser Power | 1.03 | 1 | 1.03 | 3.76 | 0.0569 | |
AB | 0.7397 | 1 | 0.7397 | 2.69 | 0.1055 | |
AC | 0.1458 | 1 | 0.1458 | 0.5309 | 0.4688 | |
BC | 0.1477 | 1 | 0.1477 | 0.5378 | 0.4659 | |
A² | 0.2210 | 1 | 0.2210 | 0.8048 | 0.3729 | |
B² | 0.3876 | 1 | 0.3876 | 1.41 | 0.2390 | |
C² | 0.0015 | 1 | 0.0015 | 0.0053 | 0.9420 | |
ABC | 0.1778 | 1 | 0.1778 | 0.6476 | 0.4239 | |
A²B | 2.67 | 1 | 2.67 | 9.72 | 0.0027 | |
A²C | 0.4428 | 1 | 0.4428 | 1.61 | 0.2086 | |
AB² | 0.0557 | 1 | 0.0557 | 0.2030 | 0.6538 | |
AC² | 0.0703 | 1 | 0.0703 | 0.2560 | 0.6146 | |
B²C | 0.3790 | 1 | 0.3790 | 1.38 | 0.2442 | |
BC² | 0.0103 | 1 | 0.0103 | 0.0376 | 0.8469 | |
A³ | 0.2278 | 1 | 0.2278 | 0.8296 | 0.3657 | |
B³ | 1.00 | 1 | 1.00 | 3.65 | 0.0604 | |
C³ | 0.0323 | 1 | 0.0323 | 0.1178 | 0.7326 | |
Residual | 18.12 | 66 | 0.2745 | |||
Cor Total | 46.18 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paksoy, M.; Çandar, H.; Yılmaz, N.F. The Advancement of Waterjet-Guided Laser Cutting System for Enhanced Surface Quality in AISI 1020 Steel Sheets. Materials 2024, 17, 3458. https://doi.org/10.3390/ma17143458
Paksoy M, Çandar H, Yılmaz NF. The Advancement of Waterjet-Guided Laser Cutting System for Enhanced Surface Quality in AISI 1020 Steel Sheets. Materials. 2024; 17(14):3458. https://doi.org/10.3390/ma17143458
Chicago/Turabian StylePaksoy, Muhammed, Hakan Çandar, and Necip Fazıl Yılmaz. 2024. "The Advancement of Waterjet-Guided Laser Cutting System for Enhanced Surface Quality in AISI 1020 Steel Sheets" Materials 17, no. 14: 3458. https://doi.org/10.3390/ma17143458
APA StylePaksoy, M., Çandar, H., & Yılmaz, N. F. (2024). The Advancement of Waterjet-Guided Laser Cutting System for Enhanced Surface Quality in AISI 1020 Steel Sheets. Materials, 17(14), 3458. https://doi.org/10.3390/ma17143458