Advanced Computational Methods for Modeling, Prediction and Optimization—A Review
Abstract
:1. Introduction
2. Methodology
3. Advanced Computational Methods for System Analysis and Prediction
- Mathematical modeling and numerical methods: This includes using differential equations to describe various systems and employing numerical methods to solve these equations numerically. For example, agent-based modeling represents individual entities (agents) and their interactions to simulate the entire system’s behavior [11,12].
- Numerical simulation: Techniques such as Finite Element Analysis (FEA) are widely used in engineering tasks to analyze and predict the behavior of structures and materials under various conditions. Similarly, Computational Fluid Dynamics (CFD) is applied to simulate the flow of fluids and predict their interaction with solid boundaries [13,14,15].
- Machine learning and artificial intelligence: These algorithms are trained on historical data to predict future events or trends. Machine learning can be seen as both a data-driven approach and an optimization technique, and it is also included under the broader umbrella of artificial intelligence. Deep learning models, such as neural networks, are used for complex pattern recognition and prediction tasks, forming a subset of artificial intelligence [16,17,18,19].
- Optimization techniques: These often use genetic algorithms inspired by natural selection to solve optimization problems where the search space is very extensive [20].
- Complex systems theory: This includes the study of nonlinear dynamics, which investigates how dynamic systems respond to initial states with high sensitivity, leading to seemingly random results. Network theory, used for analyzing the interactions and dependencies among components in a system represented as a network, is another branch of complex systems theory. These principles are crucial in mechanical engineering applications, such as the development of soft sensors for predicting temperature fields in rotary kilns and the implementation of image recognition systems for temperature control in industrial processes [23,24].
3.1. The Sparrow Search Algorithm
3.2. Hybrid-Flash Butterfly Optimization Algorithm
3.3. Curriculum Reinforcement Learning
3.4. Attention-Based Isolation Forrest
3.5. Clustering-Based Redundancy Identification
3.6. The Gradient-Boosted Regression Tree for Geothermal Heat Flow
3.7. Support Vector Methods
3.8. Solution for Modeling Chaotic Behavior
3.9. Gene Expression Programming
4. Advanced Computational Methods for Material Modification and Property Prediction
4.1. Application of Advanced Computational Methods in the Development of Composite Materials
4.1.1. Composite Shells
4.1.2. Liquid Composites
4.1.3. Nanocomposite Membranes
4.2. Functionally Graded Materials
4.3. Properties and Structures Prediction of Fluoro Perovskites
4.4. The Predicting of Fiber Properties
5. Emerging Strategies in Advanced Computing and AI: Exploring Future Research Directions
5.1. Utilizing Transfer Learning in Material Science
5.2. Ensemble Models
5.3. Material Genome Technology
5.4. Quantum Computing
6. Optimization Techniques and Algorithms in Energy Systems
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gill, S.S.; Xu, M.; Ottaviani, C.; Patros, P.; Bahsoon, R.; Shaghaghi, A.; Golec, M.; Stankovski, V.; Wu, H.; Abraham, A.; et al. AI for next Generation Computing: Emerging Trends and Future Directions. Internet Things 2022, 19, 100514. [Google Scholar] [CrossRef]
- Abdulkareem, K.H.; Mohammed, M.A.; Gunasekaran, S.S.; Al-Mhiqani, M.N.; Mutlag, A.A.; Mostafa, S.A.; Ali, N.S.; Ibrahim, D.A. A Review of Fog Computing and Machine Learning: Concepts, Applications, Challenges, and Open Issues. IEEE Access 2019, 7, 153123–153140. [Google Scholar] [CrossRef]
- Hao, D.; Chen, T.; Guo, P.; Liu, D.; Wang, X.; Huang, H.; Huang, J.; Shan, F.; Yang, Z. Artificial Optoelectronic Synaptic Devices Based on Vertical Organic Field-Effect Transistors with Low Energy Consumption. Adv. Compos. Hybrid. Mater. 2023, 6, 129. [Google Scholar] [CrossRef]
- Liu, M.; Wu, H.; Wang, Y.; Ren, J.; Alshammari, D.A.; Elsalam, H.E.A.; Azab, I.H.E.; Algadi, H.; Xie, P.; Liu, Y. Flexible Cementite/Ferroferric Oxide/Silicon Dioxide/Carbon Nanofibers Composite Membrane with Low-Frequency Dispersion Weakly Negative Permittivity. Adv. Compos. Hybrid. Mater. 2023, 6, 217. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, M.; Fan, J.A. Deep Neural Networks for the Evaluation and Design of Photonic Devices. Nat. Rev. Mater. 2020, 6, 679–700. [Google Scholar] [CrossRef]
- Modi, A.; Kishore, B.; Shetty, D.K.; Sharma, V.P.; Ibrahim, S.; Hunain, R.; Usman, N.; Nayak, S.G.; Kumar, S.; Paul, R. Role of Artificial Intelligence in Detecting Colonic Polyps during Intestinal Endoscopy. Eng. Sci. 2022, 20, 25–33. [Google Scholar] [CrossRef]
- Svítek, M. Emergent Intelligence in Generalized Pure Quantum Systems. Computation 2022, 10, 88. [Google Scholar] [CrossRef]
- Tao, H.; Geng, L.; Shan, S.; Mai, J.; Fu, H. Multi-Stream Convolution-Recurrent Neural Networks Based on Attention Mechanism Fusion for Speech Emotion Recognition. Entropy 2022, 24, 1025. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent Advances and Applications of Machine Learning in Solid-State Materials Science. npj Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- Stanev, V.; Choudhary, K.; Kusne, A.G.; Paglione, J.; Takeuchi, I. Artificial Intelligence for Search and Discovery of Quantum Materials. Commun. Mater. 2021, 2, 105. [Google Scholar] [CrossRef]
- Ganie, A.H.; Sadek, L.H.; Tharwat, M.M.; Iqbal, M.A.; Miah, M.M.; Rasid, M.M.; Elazab, N.S.; Osman, M.S. New Investigation of the Analytical Behaviors for Some Nonlinear PDEs in Mathematical Physics and Modern Engineering. Partial Differ. Equ. Appl. Math. 2024, 9, 100608. [Google Scholar] [CrossRef]
- Alaei, S.; Durán-Micco, J.; Macharis, C. Synchromodal Transport Re-Planning: An Agent-Based Simulation Approach. Eur. Transp. Res. Rev. 2024, 16, 1. [Google Scholar] [CrossRef]
- Sobczyk, B.; Pyrzowski, Ł.; Miśkiewicz, M. Computational Modelling of Historic Masonry Railroad Arch Bridges. Comput. Struct. 2024, 291, 107214. [Google Scholar] [CrossRef]
- Sosnowski, M.; Krzywanski, J.; Scurek, R. A Fuzzy Logic Approach for the Reduction of Mesh-Induced Error in CFD Analysis: A Case Study of an Impinging Jet. Entropy 2019, 21, 1047. [Google Scholar] [CrossRef]
- Sosnowski, M. Computational Domain Discretization in Numerical Analysis of Flow within Granular Materials. In EPJ Web of Conferences; Dancova, P., Ed.; EDP Sciences: Les Ulis, France, 2018; Volume 180. [Google Scholar]
- Yalamanchi, P.; Datta Gupta, S. Estimation of Pore Structure and Permeability in Tight Carbonate Reservoir Based on Machine Learning (ML) Algorithm Using SEM Images of Jaisalmer Sub-Basin, India. Sci. Rep. 2024, 14, 930. [Google Scholar] [CrossRef]
- Krokos, V.; Bordas, S.P.A.; Kerfriden, P. A Graph-Based Probabilistic Geometric Deep Learning Framework with Online Enforcement of Physical Constraints to Predict the Criticality of Defects in Porous Materials. Int. J. Solids Struct. 2024, 286–287, 112545. [Google Scholar] [CrossRef]
- Han, B.; Niu, W.; Zhao, J.; Lei, P.; Luo, X. A Fault Analysis and Pattern Recognition Method for Typical Components of Complex Systems. Lect. Notes Mech. Eng. 2024, 370–376. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, B.; Lin, S.; Sun, H.; Mao, X.; Wang, M.; Chu, Y.; Hong, L.; Wei, D.-Q.; Li, M.; et al. TEPCAM: Prediction of T-Cell Receptor–Epitope Binding Specificity via Interpretable Deep Learning. Protein Sci. 2024, 33, e4841. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Song, L.; Zhu, S.; Fu, X.; Li, X.; He, C.; Li, J. Machine Learning Assisted Rational Design of Antimicrobial Peptides Based on Human Endogenous Proteins and Their Applications for Cosmetic Preservative System Optimization. Sci. Rep. 2024, 14, 947. [Google Scholar] [CrossRef]
- Arora, A.; Vats, P.; Tomer, N.; Kaur, R.; Saini, A.K.; Shekhawat, S.S.; Roopak, M. Data-Driven Decision Support Systems in E-Governance: Leveraging AI for Policymaking. Lect. Notes Netw. Syst. 2024, 844, 229–243. [Google Scholar] [CrossRef]
- Milke, V.; Luca, C.; Wilson, G.B. Reduction of Financial Tick Big Data for Intraday Trading. Expert Syst. 2024. [Google Scholar] [CrossRef]
- Calgan, H. Incommensurate Fractional-Order Analysis of a Chaotic System Based on Interaction between Dark Matter and Dark Energy with Engineering Applications. Phys. A Stat. Mech. Its Appl. 2024, 635, 129490. [Google Scholar] [CrossRef]
- Deng, W.; Ma, X.; Qiao, W. A Novel Methodology to Quantify the Impact of Safety Barriers on Maritime Operational Risk Based on a Probabilistic Network. Reliab. Eng. Syst. Saf. 2024, 243, 109884. [Google Scholar] [CrossRef]
- Chudasama, B. Fuzzy Inference Systems for Mineral Prospectivity Modeling-Optimized Using Monte Carlo Simulations. MethodsX 2022, 9, 101629. [Google Scholar] [CrossRef]
- Biegler, L.; Biros, G.; Ghattas, O.; Heinkenschloss, M.; Keyes, D.; Mallick, B.; Marzouk, Y.; Tenorio, L.; Waanders, B.B.; Willcox, K. Large-Scale Inverse Problems and Quantification of Uncertainty; Large-Scale Inverse Problems and Quantification of Uncertainty; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; p. 372. ISBN 978-0-470-68585-3. [Google Scholar]
- Xiong, Q.; Huang, S.; Yuan, Z.; Sharma, B.; Kuang, L.; Jiang, K.; Yu, L. GPIC: A Set of High-Efficiency CUDA Fortran Code Using Gpu for Particle-in-Cell Simulation in Space Physics. Comput. Phys. Commun. 2024, 295, 108994. [Google Scholar] [CrossRef]
- Morán, M.; Balladini, J.; Rexachs, D.; Rucci, E. Exploring Energy Saving Opportunities in Fault Tolerant HPC Systems. J. Parallel Distrib. Comput. 2024, 185, 104797. [Google Scholar] [CrossRef]
- Kalantari, F.; Shi, J.; Krishnamoorthy, H.S. GPU-Based Transient Analysis of Modern Grids Deploying a Hybrid DDM Algorithm. e-Prime—Adv. Electr. Eng. Electron. Energy 2024, 7, 100404. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Zhou, P.; Chen, G. Forecasting Network Interface Flow Using a Broad Learning System Based on the Sparrow Search Algorithm. Entropy 2022, 24, 478. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Yang, J. Hybrid-Flash Butterfly Optimization Algorithm with Logistic Mapping for Solving the Engineering Constrained Optimization Problems. Entropy 2022, 24, 525. [Google Scholar] [CrossRef]
- Lin, Z.; Lai, J.; Chen, X.; Cao, L.; Wang, J. Curriculum Reinforcement Learning Based on K-Fold Cross Validation. Entropy 2022, 24, 1787. [Google Scholar] [CrossRef]
- Utkin, L.; Ageev, A.; Konstantinov, A.; Muliukha, V. Improved Anomaly Detection by Using the Attention-Based Isolation Forest. Algorithms 2023, 16, 19. [Google Scholar] [CrossRef]
- Wu, T.; Song, C.; Zeng, P.; Xia, C. Cluster-Based Structural Redundancy Identification for Neural Network Compression. Entropy 2023, 25, 9. [Google Scholar] [CrossRef]
- Xu, S.; Ni, C.; Hu, X. Predicting Terrestrial Heat Flow in North China Using Multiple Geological and Geophysical Datasets Based on Machine Learning Method. Energies 2023, 16, 1620. [Google Scholar] [CrossRef]
- Badini, S.; Regondi, S.; Pugliese, R. Unleashing the Power of Artificial Intelligence in Materials Design. Materials 2023, 16, 5927. [Google Scholar] [CrossRef]
- Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials. npj Comput. Mater. 2016, 2, 16028. [Google Scholar] [CrossRef]
- Li, D.; Liu, Z.-P. Predicting Box-Office Markets with Machine Learning Methods. Entropy 2022, 24, 711. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, J.; Song, J.; Wu, J.; Zhao, C.; Leng, H. A Hybrid Method Using HAVOK Analysis and Machine Learning for Predicting Chaotic Time Series. Entropy 2022, 24, 408. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Mao, Z. Forecasting for Chaotic Time Series Based on GRP-lstmGAN Model: Application to Temperature Series of Rotary Kiln. Entropy 2023, 25, 52. [Google Scholar] [CrossRef]
- Xu, J.; Fu, D.; Shao, L.; Zhang, X.; Liu, G. A Soft Sensor Modeling of Cement Rotary Kiln Temperature Field Based on Model-Driven and Data-Driven Methods. IEEE Sens. J. 2021, 21, 27632–27639. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Hong, P.; Hu, H.; Yin, X. Recognition of the Temperature Condition of a Rotary Kiln Using Dynamic Features of a Series of Blurry Flame Images. IEEE Trans. Ind. Inf. 2016, 12, 148–157. [Google Scholar] [CrossRef]
- Gonog, L.; Zhou, Y. A Review: Generative Adversarial Networks. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 505–510. [Google Scholar]
- Olivier, J.; Aldrich, C. Dynamic Monitoring of Grinding Circuits by Use of Global Recurrence Plots and Convolutional Neural Networks. Minerals 2020, 10, 958. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Mungyeko Bisulandu, B.-J.R.; Huchet, F. Rotary Kiln Process: An Overview of Physical Mechanisms, Models and Applications. Appl. Therm. Eng. 2023, 221, 119637. [Google Scholar] [CrossRef]
- Geng, H.; Zhou, Z.; Shen, J.; Song, F. A Dual-Population-Based NSGA-III for Constrained Many-Objective Optimization. Entropy 2023, 25, 13. [Google Scholar] [CrossRef] [PubMed]
- Ming, F.; Gong, W.; Li, S.; Wang, L.; Liao, Z. Handling Constrained Many-Objective Optimization Problems via Determinantal Point Processes. Inf. Sci. 2023, 643, 119260. [Google Scholar] [CrossRef]
- Tang, T.; Gao, Y.; Yao, L.; Li, Y.; Lu, J. Development of High-Performance Energy Absorption Component Based on the Structural Design and Nanocrystallization. Mater. Des. 2018, 137, 214–225. [Google Scholar] [CrossRef]
- Mei, X.; Cui, Z.; Sheng, Q.; Zhou, J.; Li, C. Application of the Improved POA-RF Model in Predicting the Strength and Energy Absorption Property of a Novel Aseismic Rubber-Concrete Material. Materials 2023, 16, 1286. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.; Khan, A.; Ullah, A.; Shayanfar, J.; Niaz, M. Improved Shear Strength Prediction Model of Steel Fiber Reinforced Concrete Beams by Adopting Gene Expression Programming. Materials 2022, 15, 3758. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.; Khan, A.; Ullah, A. Shear Strength Prediction Model for RC Exterior Joints Using Gene Expression Programming. Materials 2022, 15, 7076. [Google Scholar] [CrossRef]
- Tariq, M.; Khan, A.; Shayanfar, J.; Hanif, M.U.; Ullah, A. A Regression Model for Predicting the Shear Strength of RC Knee Joint Subjected to Opening and Closing Moment. J. Build. Eng. 2021, 41, 102727. [Google Scholar] [CrossRef]
- Hegger, J.; Sherif, A.; Roeser, W. Nonseismic Design of Beam-Column Joints. Struct. J. 2003, 100, 654–664. [Google Scholar] [CrossRef]
- Bakir, P.G.; Boduroğlu, H.M. A New Design Equation for Predicting the Joint Shear Strength of Monotonically Loaded Exterior Beam-Column Joints. Eng. Struct. 2002, 24, 1105–1117. [Google Scholar] [CrossRef]
- Kim, J.; LaFave, J.M.; Song, J. Joint Shear Behaviour of Reinforced Concrete Beam–Column Connections. Mag. Concr. Res. 2009, 61, 119–132. [Google Scholar] [CrossRef]
- Lynn, A.C.; Moehle, J.P.; Mahin, S.A.; Holmes, W.T. Seismic Evaluation of Existing Reinforced Concrete Building Columns. Earthq. Spectra 1996, 12, 715–739. [Google Scholar] [CrossRef]
- Krzywanski, J.; Wesolowska, M.; Blaszczuk, A.; Majchrzak, A.; Komorowski, M.; Nowak, W. Fuzzy Logic and Bed-to-Wall Heat Transfer in a Large-Scale CFBC. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 254–266. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Żyłka, A.; Sztekler, K.; Kalawa, W.; Wójcik, T.; Nowak, W. Modeling of a Re-Heat Two-Stage Adsorption Chiller by AI Approach. MATEC Web Conf. 2018, 240, 05014. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Gnatowski, A.; Krzywanski, J.; Gajek, M.; Szumera, M.; Tora, B.; Kogut, K.; Knaś, K. Experimental Research and Prediction of Heat Generation during Plastics, Coal and Biomass Waste Combustion Using Thermal Analysis Methods. Energy 2024, 290, 130168. [Google Scholar] [CrossRef]
- Miller, B.; Ziemiański, L. Multi-Objective Optimization of Thin-Walled Composite Axisymmetric Structures Using Neural Surrogate Models and Genetic Algorithms. Materials 2023, 16, 6794. [Google Scholar] [CrossRef]
- Krzywanski, J.; Skrobek, D.; Zylka, A.; Grabowska, K.; Kulakowska, A.; Sosnowski, M.; Nowak, W.; Blanco-Marigorta, A.M. Heat and Mass Transfer Prediction in Fluidized Beds of Cooling and Desalination Systems by AI Approach. Appl. Therm. Eng. 2023, 225, 120200. [Google Scholar] [CrossRef]
- Lasek, L.; Krzywanski, J.; Skrobek, D.; Zylka, A.; Nowak, W. Review of Micro- and Nanobubble Technologies: Advancements in Theory and Applications and Perspectives on Adsorption Cooling and Desalination Systems. Energies 2023, 16, 8078. [Google Scholar] [CrossRef]
- Lasek, L.; Zylka, A.; Krzywanski, J.; Skrobek, D.; Sztekler, K.; Nowak, W. Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems. Energies 2023, 16, 7311. [Google Scholar] [CrossRef]
- Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Wang, Y.; Bwar, K.H.; Zhang, K. Review of Approaches to Minimise the Cost of Simulation-Based Optimisation for Liquid Composite Moulding Processes. Materials 2023, 16, 7580. [Google Scholar] [CrossRef] [PubMed]
- Alasfar, R.H.; Koç, M.; Kochkodan, V.; Ahzi, S.; Barth, N. Optimization of the Elastic Modulus for Polymeric Nanocomposite Membranes. J. Appl. Polym. Sci. 2024, 141, e54883. [Google Scholar] [CrossRef]
- Kazemzadeh-Parsi, M.-J.; Ammar, A.; Chinesta, F. Parametric Analysis of Thick FGM Plates Based on 3D Thermo-Elasticity Theory: A Proper Generalized Decomposition Approach. Materials 2023, 16, 1753. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.K.; Kant, T.; Singh, R.K. A Critical Review of Recent Research on Functionally Graded Plates. Compos. Struct. 2013, 96, 833–849. [Google Scholar] [CrossRef]
- Nikbakt, S.; Kamarian, S.; Shakeri, M. A Review on Optimization of Composite Structures Part I: Laminated Composites. Compos. Struct. 2018, 195, 158–185. [Google Scholar] [CrossRef]
- Kalita, K.; Haldar, S.; Chakraborty, S. A Comprehensive Review on High-Fidelity and Metamodel-Based Optimization of Composite Laminates. Arch. Comput. Methods Eng. 2022, 29, 3305–3340. [Google Scholar] [CrossRef]
- Habib, A.; Husain, M.; Sajjad, M.; Rahman, N.; Khan, R.; Sohail, M.; Ali, I.H.; Iqbal, S.; Khan, M.I.; Ebraheem, S.A.M.; et al. Insight into the Exemplary Physical Properties of Zn-Based Fluoroperovskite Compounds XZnF3 (X = Al, Cs, Ga, In) Employing Accurate GGA Approach: A First-Principles Study. Materials 2022, 15, 2669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhao, C.; Huo, Y.; Han, Y.; Hong, J.; Liu, Y.; Zhang, A.; Guo, R.; Ai, Y. Theoretical Calculation of Toxic/Radioactive Metal Ion Capture by Novel Nanomaterials. In Emerging Nanomaterials for Recovery of Toxic and Radioactive Metal Ions from Environmental Media; Elsevier: Amsterdam, The Netherlands, 2022; pp. 313–379. ISBN 978-0-323-85484-9. [Google Scholar]
- Cuahuizo-Huitzil, G.; Olivares-Xometl, O.; Eugenia Castro, M.; Arellanes-Lozada, P.; Meléndez-Bustamante, F.J.; Pineda Torres, I.H.; Santacruz-Vázquez, C.; Santacruz-Vázquez, V. Artificial Neural Networks for Predicting the Diameter of Electrospun Nanofibers Synthesized from Solutions/Emulsions of Biopolymers and Oils. Materials 2023, 16, 5720. [Google Scholar] [CrossRef]
- Lakshmi Narayana, P.; Wang, X.; Yeom, J.; Maurya, A.K.; Bang, W.; Srikanth, O.; Harinatha Reddy, M.; Hong, J.; Subba Reddy, N.G. Correlating the 3D Melt Electrospun Polycaprolactone Fiber Diameter and Process Parameters Using Neural Networks. J Appl. Polym. Sci 2021, 138, 50956. [Google Scholar] [CrossRef]
- You, K.W.; Arumugasamy, S.K. Deep Learning Techniques for Polycaprolactone Molecular Weight Prediction via Enzymatic Polymerization Process. J. Taiwan Inst. Chem. Eng. 2020, 116, 238–255. [Google Scholar] [CrossRef]
- Krzywanski, J.; Kijo-Kleczkowska, A.; Nowak, W.; De Souza-Santos, M.L. Technological and Modelling Progress in Green Engineering and Sustainable Development: Advancements in Energy and Materials Engineering. Materials 2023, 16, 7238. [Google Scholar] [CrossRef] [PubMed]
- Krzywanski, J.; Czakiert, T.; Muskala, W.; Sekret, R.; Nowak, W. Modeling of Solid Fuel Combustion in Oxygen-Enriched Atmosphere in Circulating Fluidized Bed Boiler. Part 2. Numerical simulations of heat transfer and gaseous pollutant emissions associated with coal combustion in O2/CO2 and O2/N2 atmospheres enriched with oxygen under circulating fluidized bed conditions. Fuel Process. Technol. 2010, 91, 364–368. [Google Scholar] [CrossRef]
- Gnatowski, A.; Kijo-Kleczkowska, A.; Suchecki, Ł.; Palutkiewicz, P.; Krzywański, J. Analysis of Thermomechanical Properties of Polyethylene with Cement Addition. Materials 2022, 15, 1587. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.; Zylka, A.; Kulakowska, A.; Skrobek, D.; Krzywanski, J.; Sosnowski, M.; Ciesielska, K.; Nowak, W. Experimental Investigation of an Intensified Heat Transfer Adsorption Bed (IHTAB) Reactor Prototype. Materials 2021, 14, 3520. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Gnatowski, A.; Tora, B.; Kogut, K.; Bytnar, K.; Krzywanski, J.; Makowska, D. Research on Waste Combustion in the Aspect of Mercury Emissions. Materials 2023, 16, 3213. [Google Scholar] [CrossRef]
- Himanen, L.; Geurts, A.; Foster, A.S.; Rinke, P. Data-Driven Materials Science: Status, Challenges, and Perspectives. Adv. Sci. 2019, 6, 1900808. [Google Scholar] [CrossRef]
- Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Duvenaud, D.; Maclaurin, D.; Blood-Forsythe, M.A.; Chae, H.S.; Einzinger, M.; Ha, D.-G.; Wu, T.; et al. Design of Efficient Molecular Organic Light-Emitting Diodes by a High-Throughput Virtual Screening and Experimental Approach. Nat. Mater 2016, 15, 1120–1127. [Google Scholar] [CrossRef]
- Mannodi-Kanakkithodi, A.; Treich, G.M.; Huan, T.D.; Ma, R.; Tefferi, M.; Cao, Y.; Sotzing, G.A.; Ramprasad, R. Rational Co-Design of Polymer Dielectrics for Energy Storage. Adv. Mater. 2016, 28, 6277–6291. [Google Scholar] [CrossRef]
- Oliynyk, A.O.; Antono, E.; Sparks, T.D.; Ghadbeigi, L.; Gaultois, M.W.; Meredig, B.; Mar, A. High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds. Chem. Mater. 2016, 28, 7324–7331. [Google Scholar] [CrossRef]
- Xue, D.; Balachandran, P.V.; Hogden, J.; Theiler, J.; Xue, D.; Lookman, T. Accelerated Search for Materials with Targeted Properties by Adaptive Design. Nat. Commun. 2016, 7, 11241. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Balachandran, P.V.; Yuan, R.; Hu, T.; Qian, X.; Dougherty, E.R.; Lookman, T. Accelerated Search for BaTiO3 -Based Piezoelectrics with Vertical Morphotropic Phase Boundary Using Bayesian Learning. Proc. Natl. Acad. Sci. USA 2016, 113, 13301–13306. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Ward, L.; Williams, T.; Laws, K.J.; Wolverton, C.; Hattrick-Simpers, J.; Mehta, A. Accelerated Discovery of Metallic Glasses through Iteration of Machine Learning and High-Throughput Experiments. Sci. Adv. 2018, 4, eaaq1566. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, Y.; Wang, C.; Xue, D.; Bai, Y.; Antonov, S.; Dai, L.; Lookman, T.; Su, Y. Machine Learning Assisted Design of High Entropy Alloys with Desired Property. Acta Mater. 2019, 170, 109–117. [Google Scholar] [CrossRef]
- Aamir, M.; Tu, S.; Tolouei-Rad, M.; Giasin, K.; Vafadar, A. Optimization and Modeling of Process Parameters in Multi-Hole Simultaneous Drilling Using Taguchi Method and Fuzzy Logic Approach. Materials 2020, 13, 680. [Google Scholar] [CrossRef] [PubMed]
- Krzywanski, J.; Urbaniak, D.; Otwinowski, H.; Wylecial, T.; Sosnowski, M. Fluidized Bed Jet Milling Process Optimized for Mass and Particle Size with a Fuzzy Logic Approach. Materials 2020, 13, 3303. [Google Scholar] [CrossRef] [PubMed]
- Otwinowski, H.; Krzywanski, J.; Urbaniak, D.; Wylecial, T.; Sosnowski, M. Comprehensive Knowledge-Driven AI System for Air Classification Process. Materials 2021, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Chu, X.; Sun, X.; Xu, K.; Deng, H.; Chen, J.; Wei, Z.; Lei, M. Machine Learning in Materials Science. InfoMat 2019, 1, 338–358. [Google Scholar] [CrossRef]
- Raccuglia, P.; Elbert, K.C.; Adler, P.D.F.; Falk, C.; Wenny, M.B.; Mollo, A.; Zeller, M.; Friedler, S.A.; Schrier, J.; Norquist, A.J. Machine-Learning-Assisted Materials Discovery Using Failed Experiments. Nature 2016, 533, 73–76. [Google Scholar] [CrossRef]
- Wang, Y.; Du, W.; Wang, H.; Zhao, Y. Intelligent Generation Method of Innovative Structures Based on Topology Optimization and Deep Learning. Materials 2021, 14, 7680. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, B.; Lv, H.; Chang, F.; Zhou, C.; Wu, L.; Zou, G. Improving Network Representation Learning via Dynamic Random Walk, Self-Attention and Vertex Attributes-Driven Laplacian Space Optimization. Entropy 2022, 24, 1213. [Google Scholar] [CrossRef]
- Gupta, V.; Choudhary, K.; DeCost, B.; Tavazza, F.; Campbell, C.; Liao, W.-K.; Choudhary, A.; Agrawal, A. Structure-Aware Graph Neural Network Based Deep Transfer Learning Framework for Enhanced Predictive Analytics on Diverse Materials Datasets. npj Comput. Mater. 2024, 10, 1. [Google Scholar] [CrossRef]
- Zhu, R.; Tang, B.; Wei, W. Ensemble Learning-Based Reactive Power Optimization for Distribution Networks. Energies 2022, 15, 1966. [Google Scholar] [CrossRef]
- Pietrenko-Dabrowska, A.; Koziel, S.; Mahrokh, M. Optimization-Based High-Frequency Circuit Miniaturization through Implicit and Explicit Constraint Handling: Recent Advances. Energies 2022, 15, 6955. [Google Scholar] [CrossRef]
- Vivekanandan, D.; Wirth, S.; Karlbauer, P.; Klarmann, N. A Reinforcement Learning Approach for Scheduling Problems with Improved Generalization through Order Swapping. Mach. Learn. Knowl. Extr. 2023, 5, 418–430. [Google Scholar] [CrossRef]
- Krzywanski, J.; Skrobek, D.; Sosnowski, M.; Ashraf, W.M.; Grabowska, K.; Zylka, A.; Kulakowska, A.; Nowak, W.; Sztekler, K.; Shahzad, M.W. Towards Enhanced Heat and Mass Exchange in Adsorption Systems: The Role of AutoML and Fluidized Bed Innovations. Int. Commun. Heat Mass Transf. 2024, 152, 107262. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, Z.; Wang, J.; Zhang, C.; Zhang, H. Introduction of Materials Genome Technology and Its Applications in the Field of Biomedical Materials. Materials 2023, 16, 1906. [Google Scholar] [CrossRef]
- Surmiak, M.A.; Zhang, T.; Lu, J.; Rietwyk, K.J.; Raga, S.R.; McMeekin, D.P.; Bach, U. High-Throughput Characterization of Perovskite Solar Cells for Rapid Combinatorial Screening. Sol. RRL 2020, 4, 2000097. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Wu, H.-H.; Wu, Y.; Mi, Z.; Mao, X. Towards Enhanced Strength-Ductility Synergy via Hierarchical Design in Steels: From the Material Genome Perspective. Sci. Bull. 2021, 66, 958–961. [Google Scholar] [CrossRef]
- Kheiri, S.; Mohamed, M.G.A.; Amereh, M.; Roberts, D.; Kim, K. Antibacterial Efficiency Assessment of Polymer-Nanoparticle Composites Using a High-Throughput Microfluidic Platform. Mater. Sci. Eng. C 2020, 111, 110754. [Google Scholar] [CrossRef]
- Huber, S.P.; Bosoni, E.; Bercx, M.; Bröder, J.; Degomme, A.; Dikan, V.; Eimre, K.; Flage-Larsen, E.; Garcia, A.; Genovese, L.; et al. Common Workflows for Computing Material Properties Using Different Quantum Engines. Npj Comput Mater 2021, 7, 136. [Google Scholar] [CrossRef]
- Oliveira, R.G.; Silveira, V.; Wang, R.Z. Solar-Powered Adsorption Icemaker with Double-Stage Mass Recovery Cycle. Heat Transf. Eng. 2010, 31, 941–949. [Google Scholar] [CrossRef]
- López-Santos, O.; Salas-Castaño, M.C.; Salazar-Dantonio, D.F. Continuous Simulation of the Power Flow in AC–DC Hybrid Microgrids Using Simplified Modelling. Computation 2022, 10, 52. [Google Scholar] [CrossRef]
- O’Donnell, J.; Su, W. Attention-Focused Machine Learning Method to Provide the Stochastic Load Forecasts Needed by Electric Utilities for the Evolving Electrical Distribution System. Energies 2023, 16, 5661. [Google Scholar] [CrossRef]
- Tarragona, J.; Pisello, A.L.; Fernández, C.; De Gracia, A.; Cabeza, L.F. Systematic Review on Model Predictive Control Strategies Applied to Active Thermal Energy Storage Systems. Renew. Sustain. Energy Rev. 2021, 149, 111385. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Q.; Zhou, J.; Chen, X. A Model Predictive Control Method for Hybrid Energy Storage Systems. CSEE J. Power Energy Syst. 2020, 7, 329–338. [Google Scholar]
- Padhi, R.K.; Dora, D.T.K.; Mohanty, Y.K.; Roy, G.K.; Sarangi, B. Prediction of Bed Pressure Drop, Fluctuation and Expansion Ratios for Three-Phase Fluidization of Ternary Mixtures of Dolomite in a Conical Conduit. Cogent Eng. 2016, 3, 1181821. [Google Scholar] [CrossRef]
- Zhang, Y.; Goh, K.-L.; Ng, Y.L.; Chow, Y.; Wang, S.; Zivkovic, V. Process Intensification in Micro-Fluidized Bed Systems: A Review. Chem. Eng. Process.-Process Intensif. 2021, 164, 108397. [Google Scholar] [CrossRef]
- Krokida, M.K.; Kiranoudis, C.T. Pareto Design of Fluidized Bed Dryers. Chem. Eng. J. 2000, 79, 1–12. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, C.; Wang, H.; Wang, R.; Liu, S.; Gu, X. Model NOx, SO2 Emissions Concentration and Thermal Efficiency of CFBB Based on a Hyper-Parameter Self-Optimized Broad Learning System. Energies 2022, 15, 7700. [Google Scholar] [CrossRef]
- Krzywanski, J.; Blaszczuk, A.; Czakiert, T.; Rajczyk, R.; Nowak, W. Artificial Intelligence Treatment of NOx Emissions from CFBC in Air and Oxy-Fuel Conditions. In Proceedings of the CFB-11: Proceedings of the 11th International Conference on Fluidized Bed Technology, Beijing, China, 14–17 May 2014; pp. 619–624. [Google Scholar]
- Krzywanski, J.; Czakiert, T.; Zylka, A.; Nowak, W.; Sosnowski, M.; Grabowska, K.; Skrobek, D.; Sztekler, K.; Kulakowska, A.; Ashraf, W.M.; et al. Modelling of SO2 and NOx Emissions from Coal and Biomass Combustion in Air-Firing, Oxyfuel, iG-CLC, and CLOU Conditions by Fuzzy Logic Approach. Energies 2022, 15, 8095. [Google Scholar] [CrossRef]
- Han, L.; Wang, L.; Yang, H.; Jia, C.; Meng, E.; Liu, Y.; Yin, S. Optimization of Circulating Fluidized Bed Boiler Combustion Key Control Parameters Based on Machine Learning. Energies 2023, 16, 5674. [Google Scholar] [CrossRef]
- Li, F.; Su, J.; Sun, B. An Optimal Scheduling Method for an Integrated Energy System Based on an Improved K-Means Clustering Algorithm. Energies 2023, 16, 3713. [Google Scholar] [CrossRef]
- Scapino, L.; Zondag, H.A.; Diriken, J.; Rindt, C.C.M.; Van Bael, J.; Sciacovelli, A. Modeling the Performance of a Sorption Thermal Energy Storage Reactor Using Artificial Neural Networks. Appl. Energy 2019, 253, 113525. [Google Scholar] [CrossRef]
- Krzywanski, J. A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods. Energies 2019, 12, 4441. [Google Scholar] [CrossRef]
- Grabowska, K.; Sosnowski, M.; Krzywanski, J.; Sztekler, K.; Kalawa, W.; Zylka, A.; Nowak, W. Analysis of Heat Transfer in a Coated Bed of an Adsorption Chiller. MATEC Web Conf. 2018, 240, 01010. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Zhang, D.; Zhang, L.; Qian, F. Dynamic Multi-Objective Optimization in Brazier-Type Gasification and Carbonization Furnace. Materials 2023, 16, 1164. [Google Scholar] [CrossRef]
- Gnatowski, A.; Kijo-Kleczkowska, A.; Krzywanski, J.; Lemanski, P.; Kopciuszewska, E. Computer Simulations of Injection Process of Elements Used in Electromechanical Devices. Materials 2022, 15, 2511. [Google Scholar] [CrossRef]
- Goswami, L.; Deka, M.K.; Roy, M. Artificial Intelligence in Material Engineering: A Review on Applications of Artificial Intelligence in Material Engineering. Adv. Eng. Mater. 2023, 25, 2300104. [Google Scholar] [CrossRef]
- Roussel, C.; Böhm, K.; Neis, P. Sensor Fusion for Occupancy Estimation: A Study Using Multiple Lecture Rooms in a Complex Building. Mach. Learn. Knowl. Extr. 2022, 4, 803–813. [Google Scholar] [CrossRef]
- Algarni, S.; Sheldon, F. Systematic Review of Recommendation Systems for Course Selection. Mach. Learn. Knowl. Extr. 2023, 5, 560–596. [Google Scholar] [CrossRef]
- Gaspar-Cunha, A.; Covas, J.A.; Sikora, J. Optimization of Polymer Processing: A Review (Part II-Molding Technologies). Materials 2022, 15, 1138. [Google Scholar] [CrossRef]
- Ongar, B.; Beloev, H.; Georgiev, A.; Iliev, I.; Kijo-Kleczkowska, A. Optimization of the Design and Operating Characteristics of a Boiler Based on Three- Dimensional Mathematical Modeling. Bulg. Chem. Commun. 2023, 55, 2023. [Google Scholar] [CrossRef]
Mean Squared Error | Root Mean Squared Error | Mean Absolute Error | Mean Absolute Percentage Error | Moving Average | |
---|---|---|---|---|---|
Sparrow Search Algorithm Broad Learning System (SSA-BLS) | 0.0159 | 0.1261 | 0.0937 | 0.0294 | 97.0572% |
Stochastic Configuration Networks (SCN) | 0.0155 | 0.1244 | 0.0935 | 0.0296 | 97.0434% |
Extreme Learning Machine (ELM) | 0.1395 | 0.3686 | 0.2711 | 0.0780 | 92.1975% |
Long Short-Term Memory (LSTM) | 0.0781 | 0.2502 | 0.1885 | 0.0518 | 94.8246% |
Method | Short Overview of Method Characteristics |
---|---|
A thermal model of a rotary kiln [1] | Predicts heat transfer, temperature distribution in bed and refractory wall, considers dynamic interactions in kiln environment. |
Modeling of a soft temperature field sensor in a rotary kiln [41] | Predicts temperature distribution using computational fluid dynamics and multilayer perceptrons, utilizes air temperature, speed, and material mass flow as input data. |
Dynamic feature method of a series of blurry flame images [42] | Accurately segments flame regions from blurry images, extracts luminous and dynamic features to address rapid temperature fluctuations. |
Generative Adversarial Networks (GAN) [43] | Captures data distributions through unsupervised learning, generates realistic synthetic data, applied in image analysis, video processing, and language comprehension. |
Global Recurrence Plot (GRP) [44] | Visualizes recurring patterns in data, enhances understanding of data relationships in signal processing and time-frequency analysis. |
Long Short-Term Memory (LSTM) [45] | Integrates mechanisms for long-term information retention in machine learning applications, overcomes training difficulties in sequential data analysis. |
GRP-LSTM-GAN method [40] | Transforms time series into images, maximizing the utilization of temporal data to enhance temperature prediction using LSTM-enhanced GAN models. |
One Hidden Layer | Two Hidden Layer | Three Hidden Layer | |||||
---|---|---|---|---|---|---|---|
Number of neurons | 8 | 10 | 8-16 | 8-20 | 8-16-3 | 8-16-5 | |
R2 | Training | 0.97 | 0.97 | 0.98 | 0.98 | 0.99 | 0.98 |
Test | 0.82 | 0.80 | 0.86 | 0.88 | 0.92 | 0.93 | |
Validation | 0.96 | 0.97 | 0.98 | 0.97 | 0.97 | 0.96 | |
MMSE | Training | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
Test | 0.08 | 0.10 | 0.06 | 0.09 | 0.04 | 0.03 | |
Validation | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
No. of Case | Order of Sub-Models | MSE (p.u.) |
---|---|---|
1 | CNN, MLP, LightGBM | 0.0185 |
2 | CNN, LightGBM, MLP | 0.0203 |
3 | MLP, CNN, LightGBM | 0.0191 |
4 | MLP, LightGBM, CNN | 0.0194 |
5 | LightGBM, CNN, MLP | 0.0180 |
6 | LightGBM, MLP, CNN | 0.0157 |
7 | CNN, LightGBM, LightGBM | 0.0177 |
8 | CNN, MLP, MLP | 0.0191 |
9 | MLP, CNN, CNN | 0.0175 |
10 | MLP, LightGBM, LightGBM | 0.0176 |
11 | LightGBM, MLP, MLP | 0.0191 |
12 | LightGBM, CNN, CNN | 0.0168 |
13 | CNN, CNN, CNN | 0.0179 |
14 | MLP, MLP, MLP | 0.0181 |
15 | LightGBM, LightGBM, LightGBM | 0.0188 |
Mode | Dataset | Parameters | Min | Step | Max | No. of Simulations |
---|---|---|---|---|---|---|
Hydration | Training | Tin | 10 | 5 | 45 | 64 |
Cin | 0.300 | 0.05 | 0.65 | |||
Validation | Tin | 12.5 | 5 | 42.5 | 49 | |
Cin | 0.325 | 0.05 | 0.62 | |||
Dehydration | Training | Tin | 70 | 10 | 150 | 72 |
Cin | 0.20 | 0.05 | 0.55 | |||
Validation | Tin | 75 | 10 | 145 | 56 | |
Cin | 0.225 | 0.05 | 0.525 |
Author and Year | Reference | Strategy | Potential Research Direction |
---|---|---|---|
Gnatowski et al., 2022 | [123] | Computer simulations of injection processes | Improvement of manufacturing process quality |
Qiu et al., 2023 | [101] | Materials Genome Technology in biomedical materials | Rapid prediction and optimization of material properties |
Badini et al., 2023 | [36] | AI in materials design | Discovery of materials with high fracture toughness |
Ward et al., 2016 | [37] | Machine learning framework for predicting properties of inorganic materials | Enhancing predictive accuracy through dataset partitioning |
Goswami et al., 2023 | [124] | AI in Material Engineering | Acceleration of drug development |
Surmiak et al., 2020 | [102] | High-throughput characterization of perovskite solar cells for rapid combinatorial screening | Developing fully automated, high-throughput characterization techniques for perovskite solar cells to expedite the research and development process. |
Wang et al., 2021 | [103] | Using hierarchical structures at multiple scales to simultaneously enhance the strength and plasticity of steel | Application of high-throughput methods and big data for rapid material design. Solutions for industrial-scale steel manufacturing with hierarchical structures, including advanced technologies like additive manufacturing. |
Kheiri et al., 2020 | [104] | COMSOL Multiphysics simulations | Optimization and prediction of material properties |
Zhu et al., 2022 | [97] | Data-driven approach for reactive power optimization | Improvement of calculation time and accuracy in power optimization |
Gupta et al., 2024 | [96] | Deep transfer learning for predictive analytics on materials datasets | Expediting materials discovery across diverse data |
Krzywanski et al., 2023 | [76] | Technological and modeling progress in green engineering | Sustainable development and energy materials engineering |
Krzywanski et al., 2010 | [77] | Modelling of solid fuel combustion | Emissions reduction in fluidized bed boilers |
Gnatowski et al., 2022; Kijo-Kleczkowska et al., 2023; Grabowska et al., 2021 | [78,79,80] | Thermomechanical properties analysis and waste combustion research | Mercury emissions and heat transfer adsorption bed optimization |
Himanen et al., 2019 | [81] | Data-driven materials science | Development of novel materials via AI-based methods |
Gómez-Bombarelli et al., 2016; Mannodi-Kanakkithodi et al., 2016; Oliynyk et al., 2016; Xue et al., 2016; Ren et al., 2024; Wen et al., 2019 | [82,83,84,85,86,87] | Machine learning for material discovery | Synthesis of novel components for various applications |
Wei et al., 2019 | [92] | Machine learning in materials science | Broadening applications of AI in material property analysis |
Raccuglia et al., 2016 | [93] | Use of failed experiments in ML-assisted materials discovery | Efficient data utilization for materials discovery |
Li and Liu, 2022 | [38] | Predictive strategy based on time-series data analysis | Investment and decision-making in market trends |
Hu et al., 2022 | [95] | Network Representation Learning for materials and systems | Deciphering complex interactions within materials |
Roussel et al., 2022 | [125] | Sensor fusion for occupancy estimation | Enhancement of predictive performance in complex environments |
Pietrenko-Dabrowska et al., 2022 | [98] | Optimization-based circuit miniaturization | Control of design constraints and miniaturization |
Vivekanandan et al., 2023 | [99] | Reinforcement learning for job scheduling | Resource allocation and efficiency in manufacturing |
Algarni & Sheldon, 2023 | [126] | Recommendation systems for course selection | Energy saving and efficiency in education |
Wang et al., 2021 | [94] | Innovative structure generation | Creation of deep learning datasets from topology optimization |
Aamir et al., 2020 | [89] | Fuzzy logic in multi-hole drilling optimization | Process parameter optimization in manufacturing |
Krzywanski et al., 2020 | [90] | Fuzzy logic in fluidized bed jet milling | Optimization of mass and particle size |
Otwinowski et al., 2022 | [91] | An AI fuzzy logic-based system for air classification | Improvement of classification processes |
Gaspar-Cunha et al., 2022 | [127] | Optimization in polymer processing | Application of AI approaches in polymer technologies |
Ongar et al., 2023 | [128] | 3D mathematical modeling in boiler design | Reduction in NOx emissions in boiler operation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzywanski, J.; Sosnowski, M.; Grabowska, K.; Zylka, A.; Lasek, L.; Kijo-Kleczkowska, A. Advanced Computational Methods for Modeling, Prediction and Optimization—A Review. Materials 2024, 17, 3521. https://doi.org/10.3390/ma17143521
Krzywanski J, Sosnowski M, Grabowska K, Zylka A, Lasek L, Kijo-Kleczkowska A. Advanced Computational Methods for Modeling, Prediction and Optimization—A Review. Materials. 2024; 17(14):3521. https://doi.org/10.3390/ma17143521
Chicago/Turabian StyleKrzywanski, Jaroslaw, Marcin Sosnowski, Karolina Grabowska, Anna Zylka, Lukasz Lasek, and Agnieszka Kijo-Kleczkowska. 2024. "Advanced Computational Methods for Modeling, Prediction and Optimization—A Review" Materials 17, no. 14: 3521. https://doi.org/10.3390/ma17143521
APA StyleKrzywanski, J., Sosnowski, M., Grabowska, K., Zylka, A., Lasek, L., & Kijo-Kleczkowska, A. (2024). Advanced Computational Methods for Modeling, Prediction and Optimization—A Review. Materials, 17(14), 3521. https://doi.org/10.3390/ma17143521