Quinacridones as a Building Block for Sustainable Gliding Layers on Ice and Snow
Abstract
:1. Introduction
2. Materials and Methods
3. Assessment of the Toxicological Properties of Quinacridones
3.1. Comparison of Quinacridones and Biogenic Acridone
3.2. Applications of Quinacridones
3.3. Quinacridone Particles: Application as a Gliding Layer
3.4. QSAR Data of DQA Tautomers
Number of aromatic atoms d | 12 | 22 | 20 | 14 | 12 |
sp3sp2 hybridization ratio d | 0.136 | 0.0909 | 0.0909 | 0.136 | 0.136 |
Density [g/cm3] a | 1.31 ± 0.06 | 1.41 ± 0.06 | 1.36 ± 0.06 | 1.38 ± 0.1 | 1.38 ± 0.1 |
Molar volume [cm3] a | 260.3 ± 3.0 | 241.7 ± 3.0 | 251.0 ± 3.0 | 246.3 ± 7.0 | 246.3 ± 7.0 |
Polarizability [10−24 cm3] a | 38.82 ± 0.5 | 42.50 ± 0.5 | 40.66 ± 0.5 | 39.10 ± 0.5 | 39.10 ± 0.5 |
Surface tension [dyne/cm] a | 54.3 ± 3.0 | 77.0 ± 3.0 | 65.7 ± 3.0 | 53.3 ± 7.0 | 53.3 ± 7.0 |
Total polar surface area e | 58.2 | 66.2 | 62.2 | 62.0 | 58.3 |
pKa d | 6.4 | 5.1 | 8.3 | 5.4 | 6.4 |
log(Kow) b | 4.1 | 4.8 | 3.6 | 4.7 | 4.1 |
log(BCF) d | 1.33 | 1.76 | 1.53 | 1.69 | 1.33 |
Water solubility [mg/L] b | 2.2 | 0.046 | 0.44 | 0.056 | 2.2 |
NOAEL [mg/kg bw] c | 20.6 | 26.8 | 11.0 | 28.3 | 20.6 |
Acute toxicity (LD50) [mg/kg bw] d | 2244 | 2747 | 3170 | 623 | 2244 |
Persistence (sediment) [days] c | 229.1 | 70.8 | 49.0 | 229.1 | 229.1 |
Persistence (soil) [days] c | 33.9 | 22.9 | 4.9 | 33.9 | 33.9 |
Persistence (water) [days] c | 26.3 | 4.2 | 3.9 | 22.4 | 26.3 |
Sewage treatment plant total removal b | 34.83% | 69.53% | 16.34% | 65.05% | 34.83% |
Sludge (EC50) [mg/L] c | 31.13 | 23.92 | 32.01 | 35.09 | 31.13 |
Estrogen Receptor-mediated effect c | NON active (all tautomers) | ||||
Estrogen Receptor activity, binding d,f | 0 (all tautomers) | ||||
Estrogen Receptor activity, agonist d,f | 0 (all tautomers) | ||||
Estrogen Receptor activity, antagonist d,f | 0 (all tautomers) | ||||
Androgen Receptor-mediated effect c | NON active (all tautomers) | ||||
Androgen Receptor activity, binding d,f | 1 (all tautomers) | ||||
Androgen Receptor activity, agonist d,f | 0 (all tautomers) | ||||
Androgen Receptor activity, antagonist d,f | 1 (all tautomers) | ||||
Thyroid Receptor alpha effect c | Inactive (all tautomers) | ||||
Thyroid Receptor beta effect c | Inactive (all tautomers) | ||||
Endocrine disruptor activity screening c | Inactive (all tautomers) |
3.5. Experimental Data
4. Characterization of DQA Particles and Performance as a Gliding Layer
4.1. Purity and Electronic Absorption Spectra
4.2. Particle Size and Morphology
4.3. Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlson, G.L.; Tupper, S. Ski Wax Use Contributes to Environmental Contamination by Per- and Polyfluoroalkyl Substances. Chemosphere 2020, 261, 128078. [Google Scholar] [CrossRef] [PubMed]
- Müller, V.; Costa, L.C.A.; Soares Rondan, F.; Matic, E.; Foster Mesko, M.; Kindness, A.; Feldmann, J. Per and Polyfluoroalkylated Substances (PFAS) Target and EOF Analyses in Ski Wax, Snowmelts, and Soil from Skiing Areas. Environ. Sci. Process. Impacts 2023, 25, 1926–1936. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.A.; Hartmann, N. Respiratory Exposure to Highly Fluorinated Chemicals via Application of Ski Wax and Related Health Effects. Curr. Environ. Health Rep. 2024, 11, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Bützer, P.; Brühwiler, D.; Bützer, M.R.; Al-Godari, N.; Cadalbert, M.; Giger, M.; Schär, S. Indigo—A New Tribological Substance Class for Non-Toxic and Ecological Gliding Surfaces on Ice, Snow, and Water. Materials 2022, 15, 883. [Google Scholar] [CrossRef] [PubMed]
- Niementowski, S. Ueber das Chinacridin. Berichte Dtsch. Chem. Ges. 1896, 29, 76–83. [Google Scholar] [CrossRef]
- Ullmann, F.; Maag, R. Ueber Chinacridon. Berichte Dtsch. Chem. Ges. 1906, 39, 1693–1696. [Google Scholar] [CrossRef]
- Liebermann, H. Über die Bildung von Chinakridonen aus p-Di-arylamino-terephtalsäuren. 6. Mitteilung über Umwandlungsprodukte des Succinylobernsteinsäureesters. Justus Liebigs Ann. Chem. 1935, 518, 245–259. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Wang, Y. Quinacridone-Based π-Conjugated Electronic Materials. J. Mater. Chem. C 2016, 4, 9918–9936. [Google Scholar] [CrossRef]
- Dickson, R.; Mancini, E.; Garg, N.; Woodley, J.M.; Gernaey, K.V.; Pinelo, M.; Liu, J.; Mansouri, S.S. Sustainable Bio-Succinic Acid Production: Superstructure Optimization, Techno-Economic, and Lifecycle Assessment. Energy Environ. Sci. 2021, 14, 3542–3558. [Google Scholar] [CrossRef]
- Nagime, P.V.; Upaichit, A.; Cheirsilp, B.; Boonsawang, P. Bio-Succinic Acid Production from Palm Oil Mill Effluent Using Enterococcus Gallinarum with Sequential Purification of Biogas. Fermentation 2023, 9, 369. [Google Scholar] [CrossRef]
- Irimia-Vladu, M.; Kanbur, Y.; Camaioni, F.; Coppola, M.E.; Yumusak, C.; Irimia, C.V.; Vlad, A.; Operamolla, A.; Farinola, G.M.; Suranna, G.P.; et al. Stability of Selected Hydrogen Bonded Semiconductors in Organic Electronic Devices. Chem. Mater. 2019, 31, 6315–6346. [Google Scholar] [CrossRef] [PubMed]
- Potts, G.D.; Jones, W.; Bullock, J.F.; Andrews, S.J.; Maginn, S.J. The Crystal Structure of Quinacridone: An Archetypal Pigment. J. Chem. Soc. Chem. Commun. 1994, 2565–2566. [Google Scholar] [CrossRef]
- Paulus, E.F.; Leusen, F.J.J.; Schmidt, M.U. Crystal Structures of Quinacridones. CrystEngComm 2007, 9, 131–143. [Google Scholar] [CrossRef]
- Scherwitzl, B.; Lassnig, R.; Truger, M.; Resel, R.; Leising, G.; Winkler, A. Adsorption, Desorption, and Film Formation of Quinacridone and Its Thermal Cracking Product Indigo on Clean and Carbon-Covered Silicon Dioxide Surfaces. J. Chem. Phys. 2016, 145, 094702. [Google Scholar] [CrossRef] [PubMed]
- Panina, N. Crystal Structure and Morphology Prediction of Organic Pigments. Ph.D. Thesis, Radboud University, Nijmegen, The Netherlands, 2009. [Google Scholar]
- Jones, F.; Okui, N.; Patterson, D. The Thermal Stability of Linear Trans-Quinacridone Pigments. J. Soc. Dye. Colour. 1975, 91, 361–365. [Google Scholar] [CrossRef]
- Karlöf, L.; Smevold, T.; Tretterud, O.B.; Zupan, M. Swix Test Protocol for Testing of Glide Products; Technical Note # 3-2007; SWIX: Lillehammer, Norway, 2007. [Google Scholar]
- NIST Chemistry WebBook, 9(10H)-Acridinone. Available online: https://webbook.nist.gov/cgi/cbook.cgi?InChI=FZEYVTFCMJSGMP-UHFFFAOYSA-N (accessed on 10 April 2024).
- Pubchem, N.I.H. Thamnosma Montana. Available online: https://pubchem.ncbi.nlm.nih.gov/taxonomy/Thamnosma-montana (accessed on 10 April 2024).
- Michael, J.P. Quinoline, Quinazoline and Acridone Alkaloids. Nat. Prod. Rep. 2003, 20, 476–493. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-S. Alkaloids and Coumarins of Citrus grandis. Phytochemistry 1988, 27, 3717–3718. [Google Scholar] [CrossRef]
- Pubchem, NIH. Acridone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2015 (accessed on 31 May 2024).
- European Chemicals Agency. 5,12-Dihydroquino [2,3-b]acridine-7,14-Dione. Available online: https://echa.europa.eu/de/registration-dossier/-/registered-dossier/14755/4/9 (accessed on 31 May 2024).
- European Chemicals Agency. 5,12-Dihydro-2,9-Dimethylquino[2,3-b]acridine-7,14-Dione. Available online: https://echa.europa.eu/de/registration-dossier/-/registered-dossier/15097/6/2/1 (accessed on 31 May 2024).
- Pubchem, NIH. 2,9-Dimethylquinacridone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/70423 (accessed on 31 May 2024).
- Sander, T. OSIRIS Property Explorer 2017. Available online: https://www.organic-chemistry.org/prog/peo/ (accessed on 31 May 2024).
- IMPPAT: Indian Medicinal Plants, Phytochemistry and Therapeutics. Available online: https://cb.imsc.res.in/imppat/druglikeproperties/IMPHY005654 (accessed on 10 April 2024).
- Ecological Structure Activity Relationships (ECOSAR) Predictive Model, v2.0; U.S. Environmental Protection Agency: Washington, DC, USA, 2017.
- Virtual Models for Property Evaluation of Chemicals within a Global Architecture (VEGA), v1.2.0; Istituto di Ricerche Farmacologiche Mario Negri, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS): Milan, Italy, 2021.
- Manabe, K.; Kusabayashi, S.; Yokoyama, M. Long-Life Organic Solar Cell Fabrication Using Quinacridone Pigment. Chem. Lett. 1987, 16, 609–612. [Google Scholar] [CrossRef]
- Tomida, M.; Kusabayashi, S.; Yokoyama, M. Organic Solar Cell Fabrication Using Quinacridone Pigments. Chem. Lett. 1984, 13, 1305–1308. [Google Scholar] [CrossRef]
- Dunst, S.; Karner, E.; Coppola, M.E.; Trimmel, G.; Irimia-Vladu, M. Comparison of the Solution and Vacuum-Processed Quinacridones in Homojunction Photovoltaics. Monatshefte Für Chem. Chem. Mon. 2017, 148, 863–870. [Google Scholar] [CrossRef]
- Yang, P.; Ma, L.; Bi, S.; Xi, X.; Huang, T.; Liu, R.; Su, Y.; Wu, D. Superior Anodic Lithium Storage Behavior of Organic Pigment 2,9-Dimethylquinacridone. Chem. Eng. J. 2020, 394, 124924. [Google Scholar] [CrossRef]
- Yumusak, C.; Sariciftci, N.S.; Irimia-Vladu, M. Purity of Organic Semiconductors as a Key Factor for the Performance of Organic Electronic Devices. Mater. Chem. Front. 2020, 4, 3678–3689. [Google Scholar] [CrossRef]
- ECHA—Allowed Colorants: Annex IV, Regulation 1223/2009/EC on Cosmetic Products. Available online: https://echa.europa.eu/de/cosmetics-colorant (accessed on 27 April 2024).
- Serup, J.; Hutton Carlsen, K.; Dommershausen, W.N.; Sepehri, M.; Hesse, B.; Seim, C.; Luch, A.; Schreiver, I. Identification of Pigments Related to Allergic Tattoo Reactions in 104 Human Skin Biopsies. Contact Dermat. 2020, 82, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Hauri, U.; Hohl, C. Photostability and Breakdown Products of Pigments Currently Used in Tattoo Inks. In Current Problems in Dermatology; Serup, J., Kluger, N., Bäumler, W., Eds.; S. Karger AG: Berlin, Germany, 2015; Volume 48, pp. 164–169. ISBN 978-3-318-02776-1. [Google Scholar]
- Stratmann, H.; Hellmund, M.; Veith, U.; End, N.; Teubner, W. Indicators for Lack of Systemic Availability of Organic Pigments. Regul. Toxicol. Pharmacol. 2020, 115, 104719. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, E.E. Quinacridone Pigments. In High Performance Pigments; Smith, H.M., Ed.; Wiley: Hoboken, NJ, USA, 2001; ISBN 978-3-527-30204-8. [Google Scholar]
- Chamberlain, T.R. Quinacridone Pigments. In High Performance Pigments; Faulkner, E.B., Schwartz, R.J., Eds.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-3-527-31405-8. [Google Scholar]
- Huang, Z.; Sun, H.; Zhang, H.; Wang, Y.; Li, F. π–π interaction of quinacridone derivatives. J. Comput. Chem. 2011, 32, 2055–2063. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Wang, J.; Sun, H.; Liu, Y.; Mu, Z.; Li, F.; Jiang, S.; Zhang, J.; Zhang, H.; Wang, Y.; et al. Supramolecular Structures and Assembly and Luminescent Properties of Quinacridone Derivatives. J. Phys. Chem. B 2005, 109, 8008–8016. [Google Scholar] [CrossRef] [PubMed]
- Trixler, F.; Markert, T.; Lackinger, M.; Jamitzky, F.; Heckl, W.M. Supramolecular Self-Assembly Initiated by Solid–Solid Wetting. Chem. Eur. J. 2007, 13, 7785–7790. [Google Scholar] [CrossRef] [PubMed]
- Federal Institute for Occupational Safety and Health. Activities with Nanomaterials—Technical Rule for Hazardous Substances (TRGS 527); Federal Institute for Occupational Safety and Health: Berlin, Germany, 2020. [Google Scholar]
- GESTIS DNEL List: Hazardous Substance Information System of the German Social Accident Insurance. Available online: https://www.dguv.de/ifa/gestis/gestis-dnel-liste/index.jsp (accessed on 26 April 2024).
- WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO European Centre for Environment and Health: Bonn, Germany, 2021; ISBN 978-92-4-003422-8.
- Chesman, A.S.R.; Liepa, A.J. Some Products from C=O Condensations of Quinacridones. Aust. J. Chem. 2021, 74, 111. [Google Scholar] [CrossRef]
- Hradilova, S.; Zavodna, T.; Belza, J.; Irimia-Vladu, M.; Sariciftci, N.S.; Yumusak, C.; Polakova, K. Biocompatibility Assessment of Organic Semiconductor Pigments Epindolidione and Quinacridone. Microchem. J. 2024, 202, 110740. [Google Scholar] [CrossRef]
- Analog Identification Methodology (AIM); v1.01; U.S. EPA, Risk Assessment Division: Washington, DC, USA, 2013.
- EPA. CompTox Chemicals Dashboard v2.2, C.I. Pigment Red 122, 980-26-7. Available online: https://comptox.epa.gov/dashboard/chemical/similar-molecules/DTXSID2052655 (accessed on 26 April 2024).
- Guevara-Vela, J.M.; Gallegos, M.; Valentín-Rodríguez, M.A.; Costales, A.; Rocha-Rinza, T.; Pendás, Á.M. On the Relationship between Hydrogen Bond Strength and the Formation Energy in Resonance-Assisted Hydrogen Bonds. Molecules 2021, 26, 4196. [Google Scholar] [CrossRef]
- Brühwiler, D.; Bützer, P.; Bützer, M.R. QSAR Data of 2,9-Dimethylquinacridone Tautomers [Data Set]; Zenodo: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- ACD/ChemSketch, v2.5; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2015.
- Exposure Assessment Tools and Models. Estimation Program Interface (EPI), v4.1.1; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2019.
- National Toxicology Program (NTP). OPERA: Open Structure Activity Relationship App; U.S. Department of Health and Human Services: Washington, DC, USA, 2021. [Google Scholar]
- Schreiver, I. Tattoo Pigments: Biodistribution and Toxicity of Corresponding Laser Induced Decomposition Products. Ph.D. Thesis, Freie Universität, Berlin, Germany, 2018. [Google Scholar]
- Grosjean, D.; Salmon, L.G.; Cass, G.R. Fading of Organic Artists’ Colorants by Atmospheric Nitric Acid: Reaction Products and Mechanisms. Environ. Sci. Technol. 1992, 26, 952–959. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhou, J.; Wu, S.; Wei, Y.; Chang, A.; Liu, X.; Shangguan, D. DNA Interaction, Cellular Localization and Cytotoxicity of Quinacridone Derivatives. Dye. Pigment. 2015, 121, 328–335. [Google Scholar] [CrossRef]
- Gaudron, S.; Ferrier-Le Bouëdec, M.; Franck, F.; D’Incan, M. Azo Pigments and Quinacridones Induce Delayed Hypersensitivity in Red Tattoos. Contact Dermat. 2015, 72, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Greve, B.; Chytry, R.; Raulin, C. Contact Dermatitis from Red Tattoo Pigment (Quinacridone) with Secondary Spread. Contact Dermat. 2003, 49, 265–266. [Google Scholar] [CrossRef] [PubMed]
- Pubchem, NIH, ChemIDplus. Cinquasia Red. Available online: https://chem.nlm.nih.gov/chemidplus/rn/1047-16-1 (accessed on 26 April 2024).
- Pubchem, NIH, ChemIDplus. C.I. Pigment Red 122. Available online: https://chem.nlm.nih.gov/chemidplus/rn/980-26-7 (accessed on 26 April 2024).
- National Institute of Technology and Evolution, Tokio, Chemical Evaluation and Research Organization, Combined Repeated Dose and Reproductive/Developmental Toxicity Screening Test of Quino[2,3-b]Acridine-7,14-Dione, 5,12-Dihydro-2,9-Dimethyl- by Oral Administration in Rats. Available online: https://www.nite.go.jp/chem/jcheck/tempfile_list.action?tpk=26536&ppk=7944&kinou=100&type=ja (accessed on 13 June 2022).
- Federal Office for the Environment: Swiss Eco-Factors 2021 According to the Ecological Scarcity Method. Available online: https://www.bafu.admin.ch/bafu/de/home/themen/thema-wirtschaft-und-konsum/wirtschaft-und-konsum--publikationen/publikationen-wirtschaft-und-konsum/oekofaktoren-schweiz.html (accessed on 21 April 2023).
- U.S. Environmental Protection Agency. EPA’s Safer Choice Standard; U.S. Environmental Protection Agency: Washington, DC, USA, 2015. [Google Scholar]
- Arnot, J.A.; Gobas, F.A. A Review of Bioconcentration Factor (BCF) and Bioaccumulation Factor (BAF) Assessments for Organic Chemicals in Aquatic Organisms. Environ. Rev. 2006, 14, 257–297. [Google Scholar] [CrossRef]
- Toropov, A.A.; Toropova, A.P.; Pizzo, F.; Lombardo, A.; Gadaleta, D.; Benfenati, E. CORAL: Model for No Observed Adverse Effect Level (NOAEL). Mol. Divers. 2015, 19, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Kou, Z.; Dai, W. Aryl Hydrocarbon Receptor: Its Roles in Physiology. Biochem. Pharmacol. 2021, 185, 114428. [Google Scholar] [CrossRef] [PubMed]
- Mosa, F.E.S.; El-Kadi, A.O.S.; Barakat, K. Targeting the Aryl Hydrocarbon Receptor (AhR): A Review of the In-Silico Screening Approaches to Identify AhR Modulators. In High-Throughput Screening for Drug Discovery; Saxena, S.K., Ed.; IntechOpen: London, UK, 2022; ISBN 978-1-83962-947-1. [Google Scholar]
- Lamas, B.; Natividad, J.M.; Sokol, H. Aryl Hydrocarbon Receptor and Intestinal Immunity. Mucosal Immunol. 2018, 11, 1024–1038. [Google Scholar] [CrossRef] [PubMed]
- Safe, S.; Jin, U.; Park, H.; Chapkin, R.S.; Jayaraman, A. Aryl Hydrocarbon Receptor (AHR) Ligands as Selective AHR Modulators (SAhRMs). Int. J. Mol. Sci. 2020, 21, 6654. [Google Scholar] [CrossRef]
- Torti, M.F.; Giovannoni, F.; Quintana, F.J.; García, C.C. The Aryl Hydrocarbon Receptor as a Modulator of Anti-Viral Immunity. Front. Immunol. 2021, 12, 624293. [Google Scholar] [CrossRef]
- Barroso, A.; Mahler, J.V.; Fonseca-Castro, P.H.; Quintana, F.J. The Aryl Hydrocarbon Receptor and the Gut–Brain Axis. Cell. Mol. Immunol. 2021, 18, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, C.F.; Bolden, A.L.; Liroff, R.A.; Rochester, J.R.; Vandenbergh, J.G. Twenty-Five Years of Endocrine Disruption Science: Remembering Theo Colborn. Environ. Health Perspect. 2016, 124. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Prakash, A.; Tiwari, R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front. Public Health 2020, 8, 553850. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of Graphene-Family Nanoparticles: A General Review of the Origins and Mechanisms. Part. Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Chortarea, S.; Kuru, O.C.; Netkueakul, W.; Pelin, M.; Keshavan, S.; Song, Z.; Ma, B.; Gómes, J.; Abalos, E.V.; de Luna, L.A.V.; et al. Hazard Assessment of Abraded Thermoplastic Composites Reinforced with Reduced Graphene Oxide. J. Hazard. Mater. 2022, 435, 129053. [Google Scholar] [CrossRef] [PubMed]
- Kuempel, E.D.; Sorahan, T. Carbon Black; Identification of Research Needs to Resolve the Carcinogenicity of High-Priority IARC Carcinogens: Views and Expert Opinions of an IARC/NORA Expert Group Meeting, Lyon, France, 30 June–2 July 2009; International Agency for Research on Cancer: Lyon, France, 2009; ISBN 978-92-832-2449-5. [Google Scholar]
- Enengl, S.; Enengl, C.; Pluczyk, S.; Glowacki, E.D.; Lapkowski, M.; Ehrenfreund, E.; Neugebauer, H.; Sariciftci, N.S. Spectroscopic Characterization of Charge Carriers of the Organic Semiconductor Quinacridone Compared with Pentacene during Redox Reactions. J. Mater. Chem. C 2016, 4, 10265–10278. [Google Scholar] [CrossRef]
- Głowacki, E.D.; Leonat, L.; Irimia-Vladu, M.; Schwödiauer, R.; Ullah, M.; Sitter, H.; Bauer, S.; Sariciftci, N.S. Intermolecular Hydrogen-Bonded Organic Semiconductors—Quinacridone versus Pentacene. Appl. Phys. Lett. 2012, 101, 023305. [Google Scholar] [CrossRef]
- De Feyter, S.; Gesquière, A.; De Schryver, F.C.; Keller, U.; Müllen, K. Aggregation Properties of Soluble Quinacridones in Two and Three Dimensions. Chem. Mater. 2002, 14, 989–997. [Google Scholar] [CrossRef]
- Meyer, G.; Matthäi, M.; Auge, J.; Lindow, H. Crystallisation Processes and Hardness of Paraffin Waxes Characterised by DSC, Ultrasonic, X-Ray and Needle Penetration Measurements. SOFW Int. J. Appl. Sci. 2005, 8, 51–58. [Google Scholar]
- He, Z.; Zhuo, Y.; Zhang, Z.; He, J. Design of Icephobic Surfaces by Lowering Ice Adhesion Strength: A Mini Review. Coatings 2021, 11, 1343. [Google Scholar] [CrossRef]
- Bützer, P.; Bützer, M.R. Is a Sliding Layer Formed When Gliding on Ice or Snow? A Chronological Overview—As Time-Specific Knowledge. Part I. Gliding 2022, 4, 22–36, ISSN 2509-9442. [Google Scholar]
- Bützer, P.; Bützer, M.R. Is a Sliding Layer Formed When Gliding on Ice or Snow? A Chronological Overview—As Time-Specific Knowledge. Part II. Gliding 2023, 2, 10–42, ISSN 2509-9442. [Google Scholar]
- Li, J.; Zhang, M.; Ge, Y.; Wen, Y.; Luo, J.; Yin, D.; Wang, C.; Wang, C. Emission Characteristics of Tyre Wear Particles from Light-Duty Vehicles. Atmosphere 2023, 14, 724. [Google Scholar] [CrossRef]
Name | acridone [18] | quinacridone | 2,9-dimethylquinacridone |
Abbreviation | – | QA | DQA |
CAS No. | 578-95-0 | 1047-16-1 | 980-26-7 |
Origin | Biogenic [19,20,21] | synthetic | synthetic |
Water solubility [mg/L] (24 °C) | 0.0047 [22] | 0.0103 [23] | 0.0056 [24] |
log(Kow) gm7 | 2.6 | 3.1 | 4.0 |
Bioconcentration factor (BCF) gm7 | 20.5 | 14.8 | 26.7 |
log(Koc) gm3 | 3.3 | 5.0 | 5.1 |
Green algae EC50 (96 h) [mg/L] a | 112 | 293 | 55.8 |
Algae chronic (NOEC) [mg/L] b | 0.057 | 0.027 | 0.025 |
DM acute EC50 [mg/L] b,gm2 | 0.35 | 0.55 | 0.56 |
DM LC50 (48 h) [mg/L] b,gm2 | 0.97 | 1.33 | 1.12 |
DM chronic (NOEC) [mg/L] b | 0.42 | 1.27 | 1.10 |
Fish acute LC50 [mg/L] b | 10–100 | 1–10 | 1–10 |
Fish chronic (NOEC) [mg/L] b | 0.071 | 0.039 | 0.028 |
Sludge EC50 [mg/L] b | 18.0 | 26.3 | 28.9 |
Earthworm LC50 (14 d) [mg/L] a | 366 | 630 | 529 |
Bee toxicity [µg/bee] b | >100 | >100 | >100 |
LD50 (rat, oral) [mg/kg] b; (experimental rat [mg/kg]) [25] | 2402 | 3352 (>20) | 2633 (>23) |
Endocrine disruptor activity b | inactive | inactive | inactive |
Total body elimination half-life [h] b | 5.2 | 8.4 | 10.8 |
NOAEL [mg/kg bw] | 4.9 | 6.3 | 10.9 |
Druglikeness [26,27] | 0.78 | 0.79 | −1.03 |
Drug Score [26] | 0.39 | 0.14 | 0.08 |
Conditions | Test 1 | Test 2 |
---|---|---|
Location | Hoch-Ybrig, Switzerland | St. Moritz, Switzerland |
Date | 8 January 2021 | 20 January 2021 |
Snow temperature [°C] | −8.5 | −7 |
Air temperature [°C] | −8 | −2 |
Air humidity [%] | 83 | 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bützer, P.; Bützer, M.R.; Piffaretti, F.; Schneider, P.; Lustenberger, S.; Walther, F.; Brühwiler, D. Quinacridones as a Building Block for Sustainable Gliding Layers on Ice and Snow. Materials 2024, 17, 3543. https://doi.org/10.3390/ma17143543
Bützer P, Bützer MR, Piffaretti F, Schneider P, Lustenberger S, Walther F, Brühwiler D. Quinacridones as a Building Block for Sustainable Gliding Layers on Ice and Snow. Materials. 2024; 17(14):3543. https://doi.org/10.3390/ma17143543
Chicago/Turabian StyleBützer, Peter, Marcel Roland Bützer, Florence Piffaretti, Patrick Schneider, Simon Lustenberger, Fabian Walther, and Dominik Brühwiler. 2024. "Quinacridones as a Building Block for Sustainable Gliding Layers on Ice and Snow" Materials 17, no. 14: 3543. https://doi.org/10.3390/ma17143543
APA StyleBützer, P., Bützer, M. R., Piffaretti, F., Schneider, P., Lustenberger, S., Walther, F., & Brühwiler, D. (2024). Quinacridones as a Building Block for Sustainable Gliding Layers on Ice and Snow. Materials, 17(14), 3543. https://doi.org/10.3390/ma17143543