Non-Invasive Raman Classification Comparison with pXRF of Monochrome and Related Qing Porcelains: Lead-Rich-, Lead-Poor-, and Alkali-Based Glazes
Abstract
:1. Introduction
2. Method and Artifacts
2.1. Artifacts
Description of the Artifacts
2.2. Spectroscopic Analysis
2.2.1. Elemental Composition
2.2.2. Phase Identification
3. Results
3.1. Compositions and Coloring Agents of Monochrome Glazes
3.1.1. Colors
3.1.2. Compositions
- -
- Compositions very rich in lead, ranging between 55 to 60 wt% PbO;
- -
- Compositions containing a high level of lead, between 40 to 50 wt% PbO;
- -
- Compositions containing average-to-low lead levels, approximatively 20% wt PbO.
3.2. XRF Analyses of Figurines
3.3. XRF Analyze of Bols
3.4. Raman Categorization
- -
- A ~1045 cm−1 band with very low intensity;
- -
- A rather strong 1080–1090 cm−1 peak with a ca. 980 cm−1 shoulder;
- -
- A 980–1000 cm−1 doublet of nearly equal intensity;
- -
- An intense single band at ~950 cm−1.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, L. The History of Chinese Ceramics; Springer Nature: Singapore, 2023. [Google Scholar] [CrossRef]
- Ferchault de Réaumur, R.A. Idée Générale des Différentes Manières Dont on Peut Faire la Porcelaine et Quelles Sont les Véritables Matières de Celle de la Chine; Mémoires Académie Sciences: Paris, France, 1727; pp. 185–203. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k3589s/f377.item (accessed on 6 February 2024).
- Ferchault de Réaumur, R.A. Second Mémoire sur la Porcelaine ou Suite des Principes qui Doivent Conduire dans la Composition des Porcelaines de Différents Genres et Qui Etablissent les Caractères des Matières Fondantes qu’on ne Peut Choisir pour Tenir Lieu de Celle qu’on Employe à la Chine; Mémoires Académie Sciences: Paris, France, 1729; pp. 325–343. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k3527h/f495.item (accessed on 6 February 2024).
- Ferchault de Réaumur, R.A. Mémoire sur L’art de Faire Une Nouvelle Espèce de Porcelaine par des Moyens Extrêmement Simples et Faciles ou de Transformer le Verre en Porcelaine; Mémoires Académie des Sciences: Paris, France, 1739; pp. 370–388. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k3536g/f496.item (accessed on 6 February 2024).
- Brongniart, A. Traité des Arts Céramiques ou des Poteries Considérées dans leur Histoire, leur Pratique et leur Théorie, 3rd ed.; Salvetat, A., Asselin, P., Eds.; Libraire de la Faculté de Médecine: Paris, France, 1877; Volume 2. [Google Scholar]
- Kingery, W.D. Ancient Technology to Modern Science; Ceramic and Civilization Volume I; The American Ceramic Society: Westerville, OH, USA, 1984. [Google Scholar]
- Kingery, W.D. Technology and Style; Ceramic and Civilization Volume II; The American Ceramic Society: Westerville, OH, USA, 1986. [Google Scholar]
- Kingery, W.D. High Technology Ceramics–Past, Present, and Future. The Nature of Innovation and Change in Ceramic Technology; Ceramic and Civilization Volume III; The American Ceramic Society: Westerville, OH, USA, 1986. [Google Scholar]
- McGovern, P.E.; Notis, M.D.; Kingery, W.D. Cross-Craft and Cross-Cultural Interactions in Ceramics; Ceramic and Civilization Volume IV; The American Ceramic Society: Westerville, OH, USA, 1989. [Google Scholar]
- Li, J. The evolution of Chinese pottery and porcelain technology. In Ancient Technology to Modern Science; Ceramic and Civilization Volume I; The American Ceramic Society: Westerville, OH, USA, 1984; pp. 135–162. [Google Scholar]
- Zhang, F. The origin and development of traditional Chinese glazes and decorative ceramic colors, in Kingery, W.D. In Ancient Technology to Modern Science; Ceramic and Civilization Volume I; The American Ceramic Society: Westerville, OH, USA, 1984; pp. 163–180. [Google Scholar]
- Wood, N. Chinese Glazes: Their Origins, Chemistry, and Recreation; University of Pennsylvania Press: Philadelphia, PA, USA, 1999. [Google Scholar]
- Lemiere, B. A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Vandenabeele, P.; Colomban, P. Raman Spectroscopy in Cultural Heritage Preservation; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Wen, R.; Wang, C.S.; Mao, Z.W.; Huang, Y.Y.; Pollard, A.M. The chemical composition of blue pigment on Chinese blue-and-white porcelain of the Yuan and Ming Dynasties (AD 1271–1644). Archaeometry 2007, 49, 101–115. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Hu, Y.J.; Tao, Y.; Sun, J.; Cui, Y.; Wang, K.; Hu, D.B. Study on the microstructure of the multilayer glaze of the 16th-17th century export blue-and-white porcelain excavated from Nan’ao Shipwreck. Ceram. Int. 2016, 42, 17456–17465. [Google Scholar] [CrossRef]
- Jiang, X.C.Y.; Ma, Y.Y.; Chen, Y.; Li, Y.Q.; Ma, Q.L.; Zhang, Z.X.; Wang, C.S.; Yang, Y.M. Raman analysis of cobalt blue pigment in blue and white porcelain: A reassessment. Spectrochim. Acta Part A-Mol. Biomol. 2018, 190, 61–67. [Google Scholar] [CrossRef] [PubMed]
- de Pauw, E.; Track, P.; Verhaeven, E.; Bauters, S.; Acke, L.; Vekemans, B.; Vincze, L. Microbeam X-ray fluorescence and X-ray absorbtion spectroscopic analysis of Chinese blue-and-white porcelain dating from the Ming dynasty. Spectrochim. Acta Part B 2018, 149, 190–196. [Google Scholar] [CrossRef]
- Wen, J.X.; Chen, Z.K.; Zeng, Q.G.; Hu, L.S.; Wang, B.; Shi, J.P.; Zhang, G.X. Multi-micro analytical studies of blue-and-white porcelain (Ming dynasty) excavated from Shuangchuan island. Ceram. Int. 2019, 45, 13362–13368. [Google Scholar] [CrossRef]
- Zhang, R.; Garachon, I.; Gethin, P.; van Campen, J. Double layers glaze analysis of the Fujian export blue-and-white porcelain from the Witte Leeuw shipwreck (1613). Ceram. Int. 2020, 46, 13474–13481. [Google Scholar] [CrossRef]
- Colomban, P.; Ngo, A.-T.; Edwards, H.G.M.; Prinsloo, L.C.; Esterhuizen, L.V. Raman identification of the different glazing technologies of Blue-and-White Ming porcelains. Ceram. Int. 2022, 48, 1673–1681. [Google Scholar] [CrossRef]
- Dias, M.I.; Prudeêncio, M.I.; De Matos, M.P.; Rodrigues, A.L. Tracing the origin of blue-and-white Chinese Porcelain ordered for the Portuguese market during the Ming Dynasty using INAA. J. Archaeol. Sci. 2013, 40, 3046–3057. [Google Scholar] [CrossRef]
- Meyer, A.; Esterhuizen, L.V. A southern African perspective of the early Indian Ocean trade, ch. 4. In Maritime Contacts of the Past. Deciphering Connections amongst Communities; Tripati, S., Ed.; Delta Book: New Delhi, India, 2015; pp. 54–94. [Google Scholar]
- Levy, E. Le Goût Chinois en Europe au XVIIIe Siècle: Catalogue du Musée des Arts Décoratifs, June–October 1910, Librairie Centrale des Beaux-Arts Paris 1910. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k441547m/f1.texteImage (accessed on 20 October 2023).
- Lion-Goldschmidt, D. Les porcelaines chinoises du palais de Santos. Arts Asiat. 1984, 39, 5–72. Available online: https://www.persee.fr/doc/arasi_0004-3958_1984_num_39_1_1616 (accessed on 20 October 2021). [CrossRef]
- Ayers, J.; Impey, O.; Mallet, J.V.G. Porcelain for Palaces: The Fashion for Japan in Europe 1650–1750; Oriental Ceramic Society: London, UK, 1990. [Google Scholar]
- Impey, O. Collecting Oriental Porcelain in Britain in the Seventeenth and Eighteenth Centuries. In The Burghley Porcelains, an Exhibition from the Burghley House Collection and Based on the 1688 Inventory and 1690 Devonshire Schedule; Japan Society: New York, NY, USA; Tokyo, Japan, 1990; pp. 36–43. [Google Scholar]
- Finlay, R. The Pilgrim Art: Cultures of Porcelain in World History; University of California Press: Berkeley, CA, USA, 2010. [Google Scholar]
- Alayrac-Fielding, V. From the curious to the “artinatural”: The meaning of oriental porcelain in 17th and 18th-century English interiors. Miranda 2012, 7, 1–21. [Google Scholar]
- Castelluccio, S. Le Gout pour les Porcelaines de Chine et du Japon à Paris aux XVIIe et XVIIIe Siècles; Monelle Hayot Editions: Saint-Rémy-en-l’Eau, France, 2013. [Google Scholar]
- van Campen, J.; Eliëns, T.M. Chinese and Japanese Porcelain for the Dutch Golden Age; Zwolle: Waanders Uitgevers, The Netherlands, 2014. [Google Scholar]
- Tichane, R. (Ed.) Père d’Entrecolle’s Letters from Ching-te-chen in 1712 and 1722, Translated in Ching-te-Chen; New York State Institute for Glaze Research, Painted Post: New York, NY, USA, 1983. [Google Scholar]
- Finlay, J. Henri Bertin and the Representation of China in Eighteenth-Century France; Routlege: New York, NY, USA, 2020. [Google Scholar]
- Curtis, E.B. Aspects of a Multi-Faceted Process: The Circulation of Enamel Wares between the Vatican and Kangxi’s Court. Des Arts Diplomatiques. Les Cadeaux Diplomatiques Entre la Chine et l’Europe aux Xviie-Xviiie Siècles. Pratiques et Enjeux. Extrême-Orient—Extrême-Occident. 2019, 43, 45–60. [Google Scholar] [CrossRef]
- Xu, X.D. Europe-China-Europe: The Transmission of the Craft of Painted Enamel in The Seventeenth and Eighteenth Centuries. In Goods from the East, 1600–1800. Trading Eurasia; Berg, M., Ed.; Palgrave Macmillan: London, UK, 2015; pp. 92–106. [Google Scholar]
- Shih, C.-F. Evidence of East-West Exchange in the Eighteenth Century: The Establishment of Painted Enamel Art at the Qing Court in the Reign of Emperor Kangxi. Natl. Palace Mus. Res. Q. 2007, 24, 45–94. [Google Scholar]
- Colomban, P.; Gironda, M.; Vangu, D.; Kırmızı, B.; Zhao, B.; Cochet, V. The technology transfer from Europe to China in the 17th–18th centuries: Non-invasive on-site XRF and Raman analyses of Chinese Qing Dynasty enameled masterpieces made using European ingredients/recipes. Materials 2021, 14, 7434. [Google Scholar] [CrossRef] [PubMed]
- Colomban, P.; Simsek Franci, G.; Gironda, M.; d’Abrigeon, P.; Schuhmacher, A.-C. pXRF Data Evaluation Methodology for On-Site Analysis of Precious Artifacts: Cobalt Used in the Blue Decoration of Qing Dynasty Overglazed Porcelain Enameled at Customs District (Guangzhou), Jingdezhen and Zaobanchu (Beijing) Workshops. Heritage 2022, 5, 1752–1778. [Google Scholar] [CrossRef]
- Colomban, P.; Simsek Franci, G.; Burlot, J.; Gallet, X.; Zhao, B.; Clais, J.B. Non-Invasive on-Site pXRF Analysis of Coloring Agents, Marks and Enamels of Qing Imperial and Non-Imperial Porcelain. Ceramics 2023, 6, 447–474. [Google Scholar] [CrossRef]
- Eppler, R.A.; Eppler, D.R. Glazes and Glass Coatings; The American Ceramic Society: Westerville, OH, USA, 2000. [Google Scholar]
- Colomban, P. Glazes and Enamels. In Encyclopedia of Glass Science, Technology, History, and Culture; Richet, P., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 2020; Chapter 10.6; Available online: https://www.wiley.com/en-us/Encyclopedia+of+Glass+Science%2C+Technology%2C+History%2C+and+Culture%2C+2+Volume+Set-p-9781118799499 (accessed on 24 April 2022).
- Colomban, P.; Milande, V.; Lucas, H. On-site Raman analysis of Medici porcelain. J. Raman Spectrosc. 2004, 35, 68–72. [Google Scholar] [CrossRef]
- Kamura, S.; Tani, T.; Matsuo, H.; Onaka, Y.; Fujisawa, T.; Unno, M. New probe for porcelain glazes y luminescence at Near-Infrared excitation. ACS Omega 2021, 6, 7829–7833. [Google Scholar] [CrossRef] [PubMed]
- Colomban, P. Full Spectral Range Raman Signatures Related to Changes in Enameling Technologies from the 18th to the 20th Century: Guidelines, Effectiveness and Limitations of the Raman Analysis. Materials 2022, 15, 3158. [Google Scholar] [CrossRef]
- Liem, N.Q.; Thanh, N.T.; Colomban, P. Reliability of Raman micro-spectroscopy in analysing ancient ceramics: The case of ancient Vietnamese porcelain and celadon glazes. J. Raman Spectrosc. 2002, 33, 287–294. [Google Scholar] [CrossRef]
- Prinsloo, L.C.; Wood, N.; Loubser, M.; Verryn, S.M.C.; Tiley, S. Re-dating of Chinese celadon shards excavated on Mapungubwe Hill, a 13(th) century iron age site in South Africa, using Raman spectroscopy, XRF and XRD. J. Raman Spectrosc. 2005, 36, 806–816. [Google Scholar] [CrossRef]
- Simsek, G.; Colomban, P.; Wong, S.; Zhao, B.; Rougeulle, A.; Liem, N.Q. Toward a fast non-destructive identification of pottery: The sourcing of 14th–16th century Vietnamese and Chinese ceramic shards. J. Cult. Her. 2015, 16, 159–172. [Google Scholar] [CrossRef]
- Van Pevenage, J.; Lauwers, D.; Herremans, D.; Verhaeven, E.; Vekemans, B.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P. A combined spectroscopic study on Chinese porcelain containing Ruan-Cai colours. Anal. Methods 2014, 6, 387–394. [Google Scholar] [CrossRef]
- Colomban, P.; Ambrosi, F.; Ngo, A.-T.; Lu, T.-A.; Feng, X.-L.; Chen, S.; Choi, C.-L. Comparative analysis of wucai Chinese porcelains using mobile and fixed Raman microspectrometers. Ceram. Int. 2017, 43, 14244–14256. [Google Scholar] [CrossRef]
- Colomban, P.; Ngo, A.-T.; Fournery, N. Non-invasive Raman Analysis of 18th Century Chinese Export/Armorial Overglazed Porcelain: Identification of the Different Enameling Technology. Heritage 2022, 5, 233–259. [Google Scholar] [CrossRef]
- Available online: http://collections.madparis.fr/ (accessed on 2 March 2024).
- Available online: https://xrfcheck.bruker.com/InfoDepth (accessed on 6 March 2024).
- Bezur, A.; Casadio, F. The analysis of porcelain using handheld and portable X-ray fluorescence spectrometers. In Handheld XRF for Art and Archaeology; Shugar, A.N., Mass, J.L., Eds.; Leuven University Press: Leuven, Belgium, 2012; pp. 249–312. [Google Scholar]
- Wood, N. An AAS study of Chinese imperial yellow porcelain bodies and their place in the history of Jingdezhen’s porcelain development. Adv. Archaeomater. 2021, 2, 49–65. [Google Scholar] [CrossRef]
- Montanari, R.; Colomban, P.; Alberghina, M.F.; Schiavone, S.; Pugliese, A.; Pelosi, C. European Smalt in 17th-Century Japan: Porcelain Decoration and Sacred Art. Heritage 2024, 7, 3080–3094. [Google Scholar] [CrossRef]
- Colomban, P.; Zhang, Y.; Zhao, B. Non-invasive Raman analyses of huafalang and related porcelain wares. Searching for evidence for innovative pigment technologies. Ceram. Int. 2017, 43, 12079–12088. [Google Scholar] [CrossRef]
- Colomban, P.; Gironda, M.; Simsek Franci, G.; d’Abrigeon, P. Distinguishing Genuine Imperial Qing Dynasty Porcelain from Ancient Replicas by On-site Noninvasive XRF and Raman Spectroscopy. Materials 2022, 15, 5147. [Google Scholar] [CrossRef]
- Sciau, P.; Noé, L.; Colomban, P. Metal nanoparticles in contemporary potters’ master pieces: Lustre and red “pigeon blood” potteries as models to understand the ancient pottery. Ceram. Int. 2016, 42, 15349–15357. [Google Scholar] [CrossRef]
- Norris, D.; Braekmans, D.; Shortland, A. Emulation and technological adaptation in late 18th-century cloisonné-style Chinese painted enamels. Archaeometry 2022, 64, 951–968. [Google Scholar] [CrossRef]
- Hou, J.Y.; Li, H.; Kang, B.Q.; Wood, N.; Wang, G.Y.; Jiang, J.X.; Wang, Z.Y.; Zou, F.A. The origins of imperial yellow glazed porcelain in the Ming Dynasty (1368 to 1644) China: Technical comparison to low-fired tile with yellow glaze. Archaeometry 2022, 64, 59–70. [Google Scholar] [CrossRef]
- Wood, N. The influence of glass technology on Chinese ceramics. In Proceedings of the International Ceramic Fair & Seminar, London, UK, 15–18 June 2001; Available online: https://www.academia.edu/download/69075089/THE_INFLUENCE_OF_GLASS_TECHNOLOGY_ON_CHI20210905-22159-10v3qdj.pdf (accessed on 22 May 2024).
- Cooper, L.; Costello, S.; Eremin, K.; Moy, M.; King, K.; Walton, M.; Pouyet, E.; Shortland, A.; Dussubieux, L. Numbered Jun Ware–a technical study. J. Am. Instit. Conserv. 2021, 60, 255–268. [Google Scholar] [CrossRef]
- Barber, D.; Franck, F.; Freestone, I.; Yusuke, M.; Tregear, M.; Wood, N.; Fukang, Z.; Pusheng, Z. Chinese Copper Red Wares; Percival David Found. Chinese Art, Monograph Series 3; Scott, R.E., Ed.; University of London: London, UK, 1992. [Google Scholar]
- Colomban, P.; Treppoz, F. Identification and differentiation of ancient and modern European porcelains by Raman macro-and micro-spectroscopy. J. Raman Spectrosc. 2001, 32, 93–102. [Google Scholar] [CrossRef]
- Colomban, P.; Maggetti, M.; d’Albis, A. Non-invasive Raman identification of crystalline and glassy phases in a 1781 Sèvres Royal Factory soft paste porcelain plate. J. Eur. Ceram. Soc. 2018, 38, 5228–5233. [Google Scholar] [CrossRef]
- Prinsloo, L.C.; Tournié, A.; Colomban, P. A Raman spectroscopic study of glass trade beads excavated at Mapungubwe hill and K2, two archaeological sites in southern Africa, raises questions about the last occupation date of the hill. J. Archaeol. Sci. 2011, 38, 3264–3277. [Google Scholar] [CrossRef]
- Colomban, P. Polymerization degree and Raman identification of ancient glasses used for jewelry, ceramic enamels and mosaics. J. Non-Crystall. Solids 2003, 323, 180–187. [Google Scholar] [CrossRef]
- Colomban, P.; Tournie, A.; Bellot-Gurlet, L. Raman identification of glassy silicates used in ceramics, glass and jewellery: A tentative differentiation guide. J. Raman Spectrosc. 2006, 37, 841–852. [Google Scholar] [CrossRef]
- Seifert, F.A.; Mysen, B.O.; Virgo, D. Three-dimensional network structure of quenched melts (glass) in the systems SiO2–NaAlO2, SiO2–CaAl2O4 and SiO2–MgAl2O4. Am. Mineral. 1982, 67, 696–717. [Google Scholar]
- Labet, V.; Colomban, P. Vibrational properties of silicates: A cluster model able to reproduce the effect of “SiO4” polymerization on Raman intensities. J. Non-Crystall. Solids 2013, 370, 10–17. [Google Scholar] [CrossRef]
- Colomban, P. Structure of oxide gels and glasses by infrared and Raman scattering: Part 2 Mullites. J. Mater. Sci. 1989, 24, 3011–3020. [Google Scholar] [CrossRef]
- Colomban, P.; Milande, V. On-site Raman analysis of the earliest known Meissen porcelain and stoneware. J. Raman Spectrosc. 2006, 37, 606–613. [Google Scholar] [CrossRef]
- Simsek, G.; Geckinli, A.E. An assessment study of tiles from Topkapı Palace Museum with energy-dispersive X-ray and Raman spectrometers. J. Raman Spectrosc. 2012, 43, 917–927. [Google Scholar] [CrossRef]
- Colomban, P.; de Laveaucoupet, R.; Milande, V. On-site Raman spectroscopic analysis of Kütahya fritwares. J. Raman Spectrosc. 2005, 36, 857–863. [Google Scholar] [CrossRef]
- Bitossi, G.; Giorgi, R.; Mauro, M.; Salvadori, B.; Dei, L. Spectroscopic techniques in cultural heritage conservation: A survey. Appl. Spectrosc. Rev. 2005, 40, 187–228. [Google Scholar] [CrossRef]
- Liritzis, I.; Zacharias, N. Portable XRF of archaeological artifacts: Current research, potentials and limitations. In X-ray Fluorescence Spectrometry (XRF) in Geoarchaeology; Shackley, M.S., Ed.; Springer: Cham, Switzerland, 2011; pp. 109–142. [Google Scholar]
- Galli, A.; Bonizzoni, L. True versus forged in the cultural heritage materials: The role of PXRF analysis. X-ray Spectrom. 2014, 43, 22–28. [Google Scholar] [CrossRef]
- Acquafredda, P. XRF technique. Phys. Sci. Rev. 2019, 4, 20180171. [Google Scholar] [CrossRef]
- Andrić, V.; Gajić-Kvaščev, M.; Crkvenjakov, D.K.; Marić-Stojanović, M.; Gadžurić, S. Evaluation of pattern recognition techniques for the attribution of cultural heritage objects based on the qualitative XRF data. Microchem. J. 2021, 167, 106267. [Google Scholar] [CrossRef]
- Silveira, P.; Falcade, T. Applications of energy dispersive X-ray fluorescence technique in metallic cultural heritage studies. J. Cult. Herit. 2022, 57, 243–255. [Google Scholar] [CrossRef]
- Harth, A. X-ray fluorescence (XRF) on painted heritage objects: A review using topic modeling. Herit. Sci. 2024, 12, 17. [Google Scholar] [CrossRef]
- Colomban, P.; Simsek Franci, G. Timurid, Ottoman, Safavid and Qajar ceramics: Raman and composition classification of the different types of glaze and pigments. Minerals 2003, 13, 977. [Google Scholar] [CrossRef]
- Burlot, J.; Colomban, P.; Bellot-Gurlet, L.; Lemasson, Q.; Pichon, L. Non-invasive analyze of Boron and Lithium in 18th Century Chinese porcelain enamel and glaze: A PIXE/PIGE study. J. Eur. Ceramic. Soc. 2024; in press. [Google Scholar]
Artifact | Analyzed Color | Reign | Method | Collection |
---|---|---|---|---|
Buddhist lion figurine | Eggplant White | Kangxi | Raman | Private |
Yellow horse figurine | Honey | Kangxi | Raman | |
Budai (fo) maggot #0 | Turquoise | Kangxi | Raman | |
Budai (fo) maggot #1 | Turquoise | Kangxi | pXRF, Raman | |
Budai (fo) maggot #2 | Turquoise | Kangxi | pXRF, Raman | |
Mandarin duck figurine | Eggplant | Kangxi | Raman | |
Green | Raman | |||
Honey | Raman | |||
Parrot figurine | Green | Kangxi | Raman | |
Honey | ||||
Libation cup P873a | Turquoise | Kangxi | pXRF, Raman | |
Lion P984 figurine | Turquoise | Kangxi | pXRF, Raman | |
Fish P857 figurine | Turquoise | Kangxi | pXRF, Raman | |
Fish P599 figurine | Turquoise | Kangxi | pXRF, Raman | |
Fish P897 figurine | Turquoise | Kangxi | pXRF, Raman | |
Black eyes | Kangxi | Raman | ||
Fish P600 figurine | Turquoise | Kangxi | pXRF, Raman | |
Bowl A4281 | Blue | Qianlong? | mRaman | Musée des arts décoratifs, Paris |
Bowl 37004B | Green | Qianlong? | pXRF, mRaman | |
Bowl 37002A | Green Yellow | Kangxi | pXRF, mRaman | |
Bowl 37002B | Green Yellow | Kangxi | pXRF, mRaman | |
Bowl 37001 | Green Yellow | Kangxi | pXRF, mRaman | |
Bowl 5623 | Orange-red | Yongzheng? | mRaman | |
Budai maggot 16407 | Honey Colorless | Kangxi | mRaman | |
Bottle 2021.54.1.1-3 | Honey | Kangxi? | mRaman |
Reign | Color | SiO2 | Al2O3 | MgO | Na2O | K2O | CaO | PbO | Fe2O3 [FeO] | P2O5 | TiO2 | CuO [Cu2O] | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Xuande * | yellow | 44.9 | 5.1 | 0.3 | 0.85 | 0.7 | 0.7 | 45.9 | 1.35 | 0.05 | Hou et al., 2022 [60] | ||
Hongzhi * | 41.8 | 5.2 | 0.3 | 0.85 | 0.8 | 0.7 | 48.4 | 1.8 | 0.05 | ||||
Jingdezhen + | yellow | 0.7 | 4.4 | 0.3 | 0.7 | 0.5 | 0.2 | 47.9 | 1.6 | 0.1 | |||
Ming | turquoise | 51.1 | 0.9 | 0.3 | 1.0 | 7.4 | 5.0 | 32.5 | 0.2 | 2.2 | Wood [61] | ||
Chenghua-5 | red | 57.5 | 9.7 | 6.6 | 3.7 | 20.4 | 1.3 | 0.5 | Cooper et al., 2021 [62] | ||||
Qing-1 | red | 31.5 | 4.7 | 1 | 3.3 | 55 | 3.6 | 0.4 | |||||
Qing-3 | red | 43.2 | 7 | 0.75 | 5.8 | 38.9 | 2 | - | |||||
Chenghua-1 | yellow | 34.3 | 3.45 | 0.4 | 0.5 | 57.3 | 2.5 | 1.4 | |||||
Qing-1 | yellow | 47.1 | 1.5 | 0.4 | 0.3 | 60.3 | 0.05 | 0.4 | |||||
Chenghua-1 | green | 44.4 | 5.2 | 0.5 | 0.7 | 46.2 | 0.5 | 1 | 1.4 | ||||
Qing-1 | 33.4 | 1.6 | 0.25 | 0.4 | 61.4 | 0.2 | 0.4 | 2.3 | |||||
Qing | red | 64 | 14.9 | 0.4 | 2.9 | 2.7 | 12.7 | [1.7] | [0.6] | Barber et al., 1992 [63] |
Artifact | SiO2 | Al2O3 | Na2O | K2O | Li2O | B2O3 | CaO | PbO | Fe2O3 | CuO |
---|---|---|---|---|---|---|---|---|---|---|
Lion P984 turquoise glaze | 78.01 | 1.05 | n.m. | 5.87 | n.m. | n.m. | 1.46 | 2.55 | 0.42 | 1.19 |
Budai 1 turquoise glaze | 75.52 | 16.07 | n.m. | 9.31 | n.m. | n.m. | 0.66 | 0.87 | 0.43 | 0.13 |
Budai 2 turquoise glaze | 71.98 | 14.96 | n.m. | 9.36 | n.m. | n.m. | 2.13 | 1.04 | 0.48 | 0.05 |
Bowl 37004B paste | 68.71 | 25.72 | n.m. | 0.01 | n.m. | n.m. | 1.82 | 3.64 | 0.10 | 0.01 |
Bowl 37002B yellow glaze | 41.98 | 12.93 | n.m. | 0.01 | n.m. | n.m. | 0.01 | 45.05 | 0.01 | 0.01 |
Bowl 37002B green glaze | 39.81 | 15.07 | n.m. | 0.01 | n.m. | n.m. | 0.01 | 44.05 | 0.01 | 1.05 |
Glaze Type | Sample | Main Stretching Mode Component(s) [Shoulder] (cm−1) | Main Bending Mode Component(s) (cm−1) | Polymerization Index + | Q3 (cm−1) | PbO Raman ++ wt% | PbO XRF +++ wt% |
---|---|---|---|---|---|---|---|
Lead-rich | 37002B | 955 | 460 | <1 | 955 | >60 | 45 |
Lead-rich | 2021 | 955 | 465 | <1 | 955 | >60 | n.m. |
Lead-poor | P599 | [995]1085 | 480 | ~1 | 1085 | ~13 | 3 |
Lead-doped | Lion | 990–1090 | 480–535 | ~1 | 1090 | ~10 | 2.5 |
Lead-doped | Budai 2 | 995–1090 | 480–535 | >1 | 1092 | ~8 | ~1 |
Artifact | View | Analyzed Color | Reign | Main Stretching νSiO4 (cm−1) | Glaze Type |
---|---|---|---|---|---|
Buddhist lion figurine (also called fo dog) | Eggplant White | Kangxi | 985/1,085,985/1045 | Pb-poor alkaline | |
Yellow horse figurine | Honey | Kangxi | 950 | Pb-rich | |
Budai (fo) maggot #0 | Turquoise | Kangxi | 1090 | Pb-doped alkaline | |
Budai (fo) maggot #1 | Turquoise | Kangxi | 1090 | Pb-doped alkaline | |
Budai (fo) maggot #2 | Turquoise | Kangxi | 1090 | Pb-doped alkaline | |
Mandarin duck figurine | Green | Kangxi | 960 | Pb-rich | |
Honey | 960 | Pb-rich | |||
Parrot figurine | Green | Kangxi | 955 | Pb-rich | |
Honey | 960 | Pb-rich | |||
Libation cup P873a | Turquoise | Kangxi | 1090 | Pb-doped alkaline | |
Lion P984 figurine | Turquoise | Kangxi | 1090 | Pb-doped alkaline | |
Fish P857 figurine | Turquoise | Kangxi | 1085 | Pb-doped alkaline | |
Fish P599 figurine | Turquoise | Kangxi | 1085 | Pb-doped alkaline | |
Fish P897 figurine | Turquoise | Kangxi | 1085 | Pb-doped alkaline | |
Fish P600 figurine | Turquoise | Kangxi | 1085 | Pb-doped alkaline | |
Bowl A4281 | Blue | Qianlong | 1040 + | HT alkaline | |
Bowl 37004B | Green | Qianlong | 960 | Pb-rich | |
Bowl 37002A | Green Yellow | Kangxi | 955 955 | Pb-rich Pb-rich | |
Bowl 37002B | Green Yellow | Kangxi | 955 955 | Pb-rich Pb-rich | |
Bowl 5623 | Orange-red | Yongzheng | 955 | Pb-rich | |
Bowl 37001 | Honey Colorless | Qianlong | 960 1045 | Pb-rich HT alkaline | |
Budai maggot 16407 | Honey | Kangxi | 960 | Pb-rich | |
Bottle 2021.54.1.1-3 | Honey | Kangxi? | 955 | Pb-rich |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colomban, P.; Gallet, X.; Simsek Franci, G.; Fournery, N.; Quette, B. Non-Invasive Raman Classification Comparison with pXRF of Monochrome and Related Qing Porcelains: Lead-Rich-, Lead-Poor-, and Alkali-Based Glazes. Materials 2024, 17, 3566. https://doi.org/10.3390/ma17143566
Colomban P, Gallet X, Simsek Franci G, Fournery N, Quette B. Non-Invasive Raman Classification Comparison with pXRF of Monochrome and Related Qing Porcelains: Lead-Rich-, Lead-Poor-, and Alkali-Based Glazes. Materials. 2024; 17(14):3566. https://doi.org/10.3390/ma17143566
Chicago/Turabian StyleColomban, Philippe, Xavier Gallet, Gulsu Simsek Franci, Nicolas Fournery, and Béatrice Quette. 2024. "Non-Invasive Raman Classification Comparison with pXRF of Monochrome and Related Qing Porcelains: Lead-Rich-, Lead-Poor-, and Alkali-Based Glazes" Materials 17, no. 14: 3566. https://doi.org/10.3390/ma17143566
APA StyleColomban, P., Gallet, X., Simsek Franci, G., Fournery, N., & Quette, B. (2024). Non-Invasive Raman Classification Comparison with pXRF of Monochrome and Related Qing Porcelains: Lead-Rich-, Lead-Poor-, and Alkali-Based Glazes. Materials, 17(14), 3566. https://doi.org/10.3390/ma17143566