Multiscale Simulation of Laser-Based Direct Energy Deposition (DED-LB/M) Using Powder Feedstock for Surface Repair of Aluminum Alloy
Abstract
:1. Introduction
2. Physics during the Powder-Based DED-LB/M Process
3. Coupled DEM-FVM Modeling of the Molten Pool
3.1. Mathematical Modeling
3.2. Numerical Implementation
3.3. Result Analysis
4. Coupled Thermostructural Modeling of the Deposit Layers
4.1. Mathematical Modeling
4.2. Numerical Implementation
4.3. Result Analysis
5. Conclusions
- (1)
- Micropores and bumping accompany the powder-based DED-LB/M process due to the extensive flow of the molten pool, and larger surface flaw sizes tend to result in an uneven deposit layer due to insufficient material supply. However, too much powder feed on the surface will lead to agglomeration of the molten materials along the scanning direction and severe damage of the metal base plate.
- (2)
- The maximum von Mises stress is far less than the yield stress of the adopted material, and no stress concentration exists during the powder-based DED-LB/M process. The total deformation will accumulate during the powder-based DED-LB/M process, and maximum deformation always occurs within the laser beam spot. No relative sliding phenomenon is observed between deposit layers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.S.; Yue, X.; Li, Q.Y.; Peng, H.L.; Dong, B.X.; Liu, T.S.; Yang, H.Y.; Fan, J.; Shu, S.L.; Qiu, F. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Kusoglu, I.M.; Gökce, B.; Barcikowski, S. Research trends in laser powder bed fusion of Al alloys within the last decade. Addit. Manuf. 2020, 36, 101489. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B.; Khorasani, M.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2021; Volume 17. [Google Scholar]
- Masroor, Z.; Rauf, A.A.; Mustafa, F.; Hussain, S.W. Crack repairing of aluminum alloy 2024 by reinforcement of Al2O3 and B4C particles using friction stir processing. In Proceedings of the 2019 Sixth International Conference on Aerospace Science and Engineering (ICASE), Islamabad, Pakistan, 12–14 November 2019; pp. 1–6. [Google Scholar]
- Da Silva, A.; Frostevarg, J.; Kaplan, A.F. Melt pool monitoring and process optimisation of directed energy deposition via coaxial thermal imaging. J. Manuf. Process. 2023, 107, 126–133. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Pastras, G.; Tzimanis, K.; Bourlesas, N. Addressing the challenge of process stability control in wire DED-LB/M process. CIRP Ann. 2024; in press. [Google Scholar] [CrossRef]
- Akbari, M.; Kovacevic, R. Closed loop control of melt pool width in robotized laser powder—Directed energy deposition process. Int. J. Adv. Manuf. Technol. 2019, 104, 2887–2898. [Google Scholar] [CrossRef]
- Wang, H.; Gould, B.; Parab, N.; Zhao, C.; Greco, A.; Sun, T.; Wolff, S.J. High-speed synchrotron X-ray imaging of directed energy deposition of titanium: Effects of processing parameters on the formation of entrapped-gas pores. Procedia Manuf. 2021, 53, 148–154. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Foteinopoulos, P. Modelling of additive manufacturing processes: A review and classification. Manuf. Rev. 2018, 5, 2. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, L.; Fuh, J.Y.H.; Zhang, H.; Yan, W. Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition. Opt. Lasers Eng. 2020, 127, 105950. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, L.; Dun, Y.; Yang, Z.; Fuh, J.Y.H.; Yan, W. Multi-physics modeling of direct energy deposition process of thin-walled structures: Defect analysis. Comput. Mech. 2021, 67, 1229–1242. [Google Scholar] [CrossRef]
- Bayat, M.; Nadimpalli, V.K.; Biondani, F.G.; Jafarzadeh, S.; Thorborg, J.; Tiedje, N.S.; Bissacco, G.; Pedersen, D.B.; Hattel, J.H. On the role of the powder stream on the heat and fluid flow conditions during directed energy deposition of maraging steel—Multiphysics modeling and experimental validation. Addit. Manuf. 2021, 43, 102021. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, W.; Li, L. Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process. Addit. Manuf. 2020, 33, 101175. [Google Scholar] [CrossRef]
- Chen, H.; Sun, Y.; Yuan, W.; Pang, S.; Yan, W.; Shi, Y. A review on discrete element method simulation in laser powder bed fusion additive manufacturing. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100017. [Google Scholar] [CrossRef]
- Aggarwal, A.; Chouhan, A.; Patel, S.; Yadav, D.K.; Kumar, A.; Vinod, A.R.; Prashanth, K.G.; Gurao, N.P. Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: A particle-scale DEM–CFD–CA approach. Int. J. Heat Mass Transf. 2020, 158, 119989. [Google Scholar] [CrossRef]
- Khairallah, S.A.; Chin, E.B.; Juhasz, M.J.; Dayton, A.L.; Capps, A.; Tsuji, P.H.; Bertsch, K.M.; Perron, A.; McCall, S.K.; McKeown, J.T. High fidelity model of directed energy deposition: Laser-powder-melt pool interaction and effect of laser beam profile on solidification microstructure. Addit. Manuf. 2023, 73, 103684. [Google Scholar] [CrossRef]
- Srivastava, S.; Garg, R.K.; Sharma, V.S.; Sachdeva, A. Measurement and Mitigation of Residual Stress in Wire-Arc Additive Manufacturing: A Review of Macro-Scale Continuum Modelling Approach. Arch. Comput. Methods Eng. 2020, 28, 3491–3515. [Google Scholar] [CrossRef]
- Stender, M.E.; Beghini, L.L.; Sugar, J.D.; Veilleux, M.G.; Subia, S.R.; Smith, T.R.; San Marchi, C.W.; Brown, A.A.; Dagel, D.J. A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Addit. Manuf. 2018, 21, 556–566. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Fang, X.; Guo, Y. Efficient predictive model of part distortion and residual stress in selective laser melting. Addit. Manuf. 2017, 17, 157–168. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Fang, X.; Guo, Y. On the simulation scalability of predicting residual stress and distortion in selective laser melting. J. Manuf. Sci. Eng. 2018, 140, 041013. [Google Scholar] [CrossRef]
- Bresson, Y.; Tongne, A.; Baili, M.; Arnaud, L. Global-to-local simulation of the thermal history in the laser powder bed fusion process based on a multiscale finite element approach. Int. J. Adv. Manuf. Technol. 2023, 127, 4727–4744. [Google Scholar] [CrossRef]
- Gu, H.; Wei, C.; Li, L.; Han, Q.; Setchi, R.; Ryan, M.; Li, Q. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting. Int. J. Heat Mass Transf. 2020, 151, 119458. [Google Scholar] [CrossRef]
- Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass Transf. 2019, 141, 1036–1048. [Google Scholar] [CrossRef]
- Barletta, A. The Boussinesq approximation for buoyant flows. Mech. Res. Commun. 2022, 124, 103939. [Google Scholar] [CrossRef]
- Lee, Y.; Zhang, W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit. Manuf. 2016, 12, 178–188. [Google Scholar] [CrossRef]
- Valencia, J.J.; Quested, P.N. Thermophysical properties. In Metals Process Simulation; ASM International: Almere, The Netherlands, 2010; pp. 18–32. [Google Scholar]
- Battezzati, L.; Greer, A. The viscosity of liquid metals and alloys. Acta Metall. 1989, 37, 1791–1802. [Google Scholar] [CrossRef]
- Mills, K.C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys; Woodhead Publishing: Cambridge, UK, 2002. [Google Scholar]
- Pierron, N.; Sallamand, P.; Jouvard, J.-M.; Cicala, E.; Mattei, S. Determination of an empirical law of aluminium and magnesium alloys absorption coefficient during Nd: YAG laser interaction. J. Phys. D Appl. Phys. 2007, 40, 2096. [Google Scholar] [CrossRef]
Symbol | Definition | Value |
---|---|---|
Density of gas phase (kg·m−3) | 1.225 | |
Specific heat of gas phase (J·kg−1·K−1) | 1006.43 | |
Thermal conductivity of gas phase (W·m−1·K−1) | 0.0242 | |
Dynamic viscosity of gas phase (kg·m−1·s−1) | 1.7894 × 10−5 |
Symbol | Definition | Value |
---|---|---|
Solidus temperature (K) | 890 [26] | |
Liquidus temperature (K) | 929 [26] | |
Vaporization temperature (K) | 2743 [26] | |
Liquidus dynamic viscosity (kg·m−1·s−1) | [27] | |
Solidus density (kg·m−3) | 2719 | |
Liquidus density (kg·m−3) | ||
Solidus specific heat (J·kg−1·K−1) | [26] | |
Liquidus specific heat (J·kg−1·K−1) | 1220 [26] | |
Solidus thermal conductivity (W·m−1·K−1) | [26] | |
Liquidus thermal conductivity (W·m−1·K−1) | 61 [26] | |
Latent heat of fusion (J·kg−1) | 3.83 × 105 [26] | |
Latent heat of vaporization (J·kg−1) | 1.087 × 107 [26] | |
Convective heat transfer coefficient (W·m2·K) | 10 | |
Surface tension coefficient (kg·s −2) | [28] | |
Universal gas constant (J·mol−1·K−1) | 8.314 | |
Stefan–Boltzmann constant (W·m−2·K−4) | 5.67 × 10−8 | |
Laser beam absorptivity | 0.35 [29] | |
Molar mass (kg·mol−1) | 0.026982 | |
ε | Surface emissivity | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Pei, Z.; Liu, Z.; Yang, L.; Yin, Y.; He, Y.; Wu, Q.; Nie, Y. Multiscale Simulation of Laser-Based Direct Energy Deposition (DED-LB/M) Using Powder Feedstock for Surface Repair of Aluminum Alloy. Materials 2024, 17, 3559. https://doi.org/10.3390/ma17143559
Zhou X, Pei Z, Liu Z, Yang L, Yin Y, He Y, Wu Q, Nie Y. Multiscale Simulation of Laser-Based Direct Energy Deposition (DED-LB/M) Using Powder Feedstock for Surface Repair of Aluminum Alloy. Materials. 2024; 17(14):3559. https://doi.org/10.3390/ma17143559
Chicago/Turabian StyleZhou, Xiaosong, Zhenchao Pei, Zhongkui Liu, Lihang Yang, Yubo Yin, Yinfeng He, Quan Wu, and Yi Nie. 2024. "Multiscale Simulation of Laser-Based Direct Energy Deposition (DED-LB/M) Using Powder Feedstock for Surface Repair of Aluminum Alloy" Materials 17, no. 14: 3559. https://doi.org/10.3390/ma17143559
APA StyleZhou, X., Pei, Z., Liu, Z., Yang, L., Yin, Y., He, Y., Wu, Q., & Nie, Y. (2024). Multiscale Simulation of Laser-Based Direct Energy Deposition (DED-LB/M) Using Powder Feedstock for Surface Repair of Aluminum Alloy. Materials, 17(14), 3559. https://doi.org/10.3390/ma17143559