Multiple Deformation Mechanisms in Adiabatic Shear Bands of a Titanium Alloy during High Strain Rate Deformation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dynamic Mechanical Response
3.2. ASB Microstructural Evolution
3.3. ASB Grain Refinement
4. Conclusions
- (1)
- Adiabatic shear instability was observed to occur during high strain rate loading, with the dynamic mechanical response exhibiting three stages: elastic deformation and stress-induced α″ martensitic transformation, followed by stress collapse and finally stress dynamic equilibrium.
- (2)
- In addition to significant grain refinement, {111}α″ nano-twins and α laths were observed in the ASB center, and there was an orientation relationship of (001)α″//(0002)α and [110]α″//[-12-10]α between α and α″, suggesting that α″ acted as an intermediate phase to coordinate the β-to-α phase transformation.
- (3)
- The peak temperature in the ASB center reached only ~676K; thus, the mechanism of significant grain refinement might not be DRX but rather DRV dominated by dislocation migration and severe plastic deformation under high strain rates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banerjee, D.; Williams, J.C. Perspectives on Titanium Science and Technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, Q.; Xin, S.; Chen, Y.; Wu, C.; Wang, H.; Xu, J.; Wan, M.; Zeng, W.; Zhao, Y. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Ritchie, R.O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Ran, C.; Chen, P.; Sheng, Z.; Li, J.; Zhang, W. Microstructural Evolution in High-Strain-Rate Deformation of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy. Materials 2018, 11, 839. [Google Scholar] [CrossRef]
- Lieou, C.K.C.; Mourad, H.M.; Bronkhorst, C.A. Strain localization and dynamic recrystallization in polycrystalline metals: Thermodynamic theory and simulation framework. Int. J. Plast. 2019, 119, 171–187. [Google Scholar] [CrossRef]
- Yan, N.; Li, Z.Z.; Xu, Y.B.; Meyers, M.A. Shear Localization in Metallic Materials at High Strain Rates. Prog. Mater. Sci. 2021, 119, 100755. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Huang, Y.F.; Liu, W.S.; Ma, Y.Z. Microstructural characteristics and evolution mechanisms of 90W-Ni-Fe alloy under high-strain-rate deformation. Mater. Sci. Eng. A 2021, 811, 141070. [Google Scholar] [CrossRef]
- Chen, H.; Hao, F.; Huang, S.; Yang, J.; Li, S.; Wang, K.; Du, Y.; Liu, X.; Yu, X. The Effects of Microstructure on the Dynamic Mechanical Response and Adiabatic Shearing Behaviors of a Near-alpha Ti-6Al-3Nb-2Zr-1Mo Alloy. Materials 2023, 16, 1406. [Google Scholar] [CrossRef]
- Sun, J.L.; Trimby, P.W.; Yan, F.K.; Liao, X.Z.; Tao, N.R.; Wang, J.T. Shear banding in commercial pure titanium deformed by dynamic compression. Acta Mater. 2014, 79, 47–58. [Google Scholar] [CrossRef]
- Yang, X.X.; Zhang, B. Material embrittlement in high strain-rate loading. Int. J. Extrem. Manuf. 2019, 1, 022003. [Google Scholar] [CrossRef]
- Ye, G.G.; Xue, S.F.; Jiang, M.Q.; Tong, X.H.; Dai, L.H. Modeling periodic adiabatic shear band evolution during high speed machining Ti-6Al-4V alloy. Int. J. Plast. 2013, 40, 39–55. [Google Scholar] [CrossRef]
- Chen, H.-H.; Zhang, X.-F.; Dai, L.-H.; Liu, C.; Xiong, W.; Tan, M.-T. Experimental study on WFeNiMo high-entropy alloy projectile penetrating semi-infinite steel target. Def. Technol. 2021, 18, 1470–1482. [Google Scholar] [CrossRef]
- Liu, X.F.; Tian, Z.L.; Zhang, X.F.; Chen, H.H.; Liu, T.W.; Chen, Y.; Wang, Y.J.; Dai, L.H. “Self-sharpening” tungsten high-entropy alloy. Acta Mater. 2020, 186, 257–266. [Google Scholar] [CrossRef]
- Nesterenko, V.F.; Meyers, M.A.; LaSalvia, J.C.; Bondar, M.P.; Chen, Y.J.; Lukyanov, Y.L. Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum. Mater. Sci. Eng. A 1997, 229, 23–41. [Google Scholar]
- Xu, Y.B.; Zhang, J.H.; Bai, Y.L.; Meyers, M.A. Shear Localization in Dynamic Deformation: Microstructural Evolution. Metall. Mater. Trans. A 2008, 39, 811–843. [Google Scholar] [CrossRef]
- Rittel, D.; Landau, P.; Venkert, A. Dynamic recrystallization as a potential cause for adiabatic shear failure. Phys. Rev. Lett. 2008, 101, 165501. [Google Scholar] [CrossRef] [PubMed]
- Magagnosc, D.J.; Lloyd, J.T.; Meredith, C.S.; Pilchak, A.L.; Schuster, B.E. Incipient dynamic recrystallization and adiabatic shear bands in Ti-7Al studied via in situ X-ray diffraction. Int. J. Plast. 2021, 141, 102992. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Chen, Z.Y.; Zhan, C.K.; Chen, T.; Wang, R.K.; Liu, C.M. Adiabatic shear localization in pure titanium deformed by dynamic loading: Microstructure and microtexture characteristic. Mater. Sci. Eng. A 2015, 640, 436–442. [Google Scholar] [CrossRef]
- Li, Z.Z.; Wang, B.F.; Zhao, S.T.; Valiev, R.Z.; Vecchio, K.S.; Meyers, M.A. Dynamic deformation and failure of ultrafine-grained titanium. Acta Mater. 2017, 125, 210–218. [Google Scholar] [CrossRef]
- Pérez-Prado, M.T.; Hines, J.A.; Vecchio, K.S. Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys. Acta Mater. 2001, 49, 2905–2917. [Google Scholar] [CrossRef]
- Wang, B.F.; Wang, X.Y.; Li, Z.Z.; Ma, R.; Zhao, S.T.; Xie, F.Y.; Zhang, X.Y. Shear localization and microstructure in coarse grained beta titanium alloy. Mater. Sci. Eng. A 2016, 652, 287–295. [Google Scholar] [CrossRef]
- Guan, X.R.; Chen, Q.; Qu, S.J.; Cao, G.J.; Wang, H.; Ran, X.D.; Feng, A.H.; Chen, D.L. High-strain-rate deformation: Stress-induced phase transformation and nanostructures in a titanium alloy. Int. J. Plast. 2023, 169, 103707. [Google Scholar] [CrossRef]
- Ran, C.; Chen, P.W.; Li, L.; Zhang, W.F. Dynamic shear deformation and failure of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy. Mater. Sci. Eng. A 2017, 694, 41–47. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Deng, C.; Liu, S.F.; Liu, Y.H.; Zhu, J.L.; Yuan, X.L. Microstructure, texture, and fracture of pure magnesium adiabatic shear band under high strain rate compression. Mater. Sci. Eng. A 2021, 822, 141632. [Google Scholar] [CrossRef]
- Ran, C.; Chen, P. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys. Materials 2018, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Duerig, T.W.; Albrecht, J.; Richter, D.; Fischer, P. Formation and Reversion of Stress Induced Martensite in Ti-10V-2Fe-3Al. Acta Metall. 1982, 30, 2161–2172. [Google Scholar] [CrossRef]
- Lee, S.W.; Oh, J.M.; Park, C.H.; Hong, J.-K.; Yeom, J.-T. Deformation mechanism of metastable titanium alloy showing stress-induced α′-Martensitic transformation. J. Alloys Compd. 2019, 782, 427–432. [Google Scholar] [CrossRef]
- Kolli, R.P.; Joost, W.J.; Ankem, S. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys. JOM 2015, 67, 1273–1280. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Bhargava, S.; Varma, V.K.; Kamat, S.V.; Gogia, A.K. Effect of β grain size on stress induced martensitic transformation in β solution treated Ti–10V–2Fe–3Al alloy. Scripta Mater. 2005, 53, 195–200. [Google Scholar] [CrossRef]
- Guan, X.R.; Chen, Q.; Qu, S.J.; Cao, G.J.; Wang, H.; Feng, A.H.; Chen, D.L. Adiabatic shear instability in a titanium alloy: Extreme deformation-induced phase transformation, nanotwinning, and grain refinement. J. Mater. Sci. Technol. 2023, 150, 104–113. [Google Scholar] [CrossRef]
- Meyers, M.A.; Xu, Y.B.; Xue, Q.; Pérez-Prado, M.T.; McNelley, T.R. Microstructural evolution in adiabatic shear localization in stainless steel. Acta Mater. 2003, 51, 1307–1325. [Google Scholar] [CrossRef]
- Contieri, R.J.; Zanotello, M.; Caram, R. Recrystallization and grain growth in highly cold worked CP-Titanium. Mater. Sci. Eng. A 2010, 527, 3994–4000. [Google Scholar] [CrossRef]
- Estrin, Y.; Vinogradov, A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013, 61, 782–817. [Google Scholar] [CrossRef]
- Edalati, K.; Bachmaier, A.; Beloshenko, V.A.; Beygelzimer, Y.; Blank, V.D.; Botta, W.J.; Bryła, K.; Čížek, J.; Divinski, S.; Enikeev, N.A.; et al. Nanomaterials by severe plastic deformation: Review of historical developments and recent advances. Mater. Res. Lett. 2022, 10, 163–256. [Google Scholar] [CrossRef]
- Yan, C.K.; Feng, A.H.; Qu, S.J.; Cao, G.J.; Sun, J.L.; Shen, J.; Chen, D.L. Dynamic recrystallization of titanium: Effect of pre-activated twinning at cryogenic temperature. Acta Mater. 2018, 154, 311–324. [Google Scholar] [CrossRef]
Phase | Lattice Parameter | Crystal Structure | Space Group |
---|---|---|---|
α phase | a = b = 0.293 nm, c = 0.466 nm | Hexagonal | P63/mmc |
β phase | a = b = c = 0.325 nm | Cubic | Im-3m |
α″ martensite | a = 0.301 nm, b = 0.490 nm, c = 0.463 nm | Orthorhombic | Cmcm |
Constant and Variable | Meaning | Value |
---|---|---|
L | Average subgrain diameter | 100–500 nm |
k | Boltzmann’s constant | 1.38 × 10−23 J·K−1 |
T | Absolute temperature | 676 K |
δ | Grain boundary thickness | 5.8 × 10−10 m |
η | Grain boundary energy | 1.19 J·m−2 |
Dbo | Constant related to grain boundary diffusion | 2.8 × 10−5 m2·s−1 |
Q | Activation energy for grain boundary diffusion | 312 kJ·mol−1 |
θ | Subgrain misorientation | 0–30° |
R | Gas constant | 8.314 J·mol−1·K−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, X.; Liu, D.; Qu, S.; Cao, G.; Wang, H.; Feng, A.; Chen, D. Multiple Deformation Mechanisms in Adiabatic Shear Bands of a Titanium Alloy during High Strain Rate Deformation. Materials 2024, 17, 3645. https://doi.org/10.3390/ma17153645
Guan X, Liu D, Qu S, Cao G, Wang H, Feng A, Chen D. Multiple Deformation Mechanisms in Adiabatic Shear Bands of a Titanium Alloy during High Strain Rate Deformation. Materials. 2024; 17(15):3645. https://doi.org/10.3390/ma17153645
Chicago/Turabian StyleGuan, Xinran, Dongrong Liu, Shoujiang Qu, Guojian Cao, Hao Wang, Aihan Feng, and Daolun Chen. 2024. "Multiple Deformation Mechanisms in Adiabatic Shear Bands of a Titanium Alloy during High Strain Rate Deformation" Materials 17, no. 15: 3645. https://doi.org/10.3390/ma17153645
APA StyleGuan, X., Liu, D., Qu, S., Cao, G., Wang, H., Feng, A., & Chen, D. (2024). Multiple Deformation Mechanisms in Adiabatic Shear Bands of a Titanium Alloy during High Strain Rate Deformation. Materials, 17(15), 3645. https://doi.org/10.3390/ma17153645