Investigating the Impact of Cell Inclination on Phase Change Material Melting in Square Cells: A Numerical Study
Abstract
:1. Introduction
2. Numerical Procedure
2.1. Physics Models
2.2. Computational Procedure
2.3. Boundary Conditions
2.4. Assumptions
- A 2-D model is used to represent the mathematical formula of the melting processes,
- Fixed thermal characteristics of the PCM in both the solid and liquid phases,
- The flow is unsteady, laminar, and incompressible,
- The viscous dissipation term is unimportant.
2.5. Grid Independent Test
3. Validation
4. Results and Discussion
4.1. Case One (Angle = 0°)
4.2. Case Two (Angle = 15°)
4.3. Case Three (Angle = 30°)
4.4. Case Four (Angle = 45°)
5. Evaluation of the Completion Time of the Melting Process for the Studied Cases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, T.; King, W.P.; Miljkovic, N. Phase Change Material-Based Thermal Energy Storage. Cell Rep. Phys. Sci. 2021, 2, 100540. [Google Scholar] [CrossRef]
- Barbi, S.; Barbieri, F.; Marinelli, S.; Rimini, B.; Merchiori, S.; Bottarelli, M.; Montorsi, M. Phase Change Material Evolution in Thermal Energy Storage Systems for the Building Sector, with a Focus on Ground-Coupled Heat Pumps. Polymers 2022, 14, 620. [Google Scholar] [CrossRef]
- Ihnayyish, I.L.; Ahmed, A.Q.; Mohammad, A.T.; Al-Syyab, A.K.S. Numerical Study to Investigate the Performance of U-Shaped Flat Plate Solar Collector Using Phase Change Materials (PCMs). J. Tech. 2023, 5, 74–80. [Google Scholar] [CrossRef]
- Luo, J.; Zou, D.; Wang, Y.; Wang, S.; Huang, L. Battery Thermal Management Systems (BTMs) Based on Phase Change Material (PCM): A Comprehensive Review. Chem. Eng. J. 2022, 430, 132741. [Google Scholar] [CrossRef]
- Jiang, K.; Liao, G.; Jiaqiang, E.; Zhang, F.; Chen, J.; Leng, E. Thermal Management Technology of Power Lithium-Ion Batteries Based on the Phase Transition of Materials: A Review. J. Energy Storage 2020, 32, 101816. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.; Wu, W.; Chen, K.; Hong, S.; Lai, Y. A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management. Energy Convers. Manag. 2019, 182, 262–281. [Google Scholar] [CrossRef]
- Al-Gaheeshi, A.M.R.; Rashid, F.L.; Eleiwi, M.A.; Basem, A. Thermo-Hydraulic Analysis of Mixed Convection in a Channel-Square Enclosure Assembly with Hemi-Sphere Source at the Bottom. Int. J. Heat Technol. 2023, 41, 551–562. [Google Scholar] [CrossRef]
- Rashid, F.L.; Eisapour, M.; Ibrahem, R.K.; Talebizadehsardari, P.; Hosseinzadeh, K.; Abbas, M.H.; Mohammed, H.I.; Yvaz, A.; Chen, Z. Solidification Enhancement of Phase Change Materials Using Fins and Nanoparticles in a Triplex-Tube Thermal Energy Storage Unit: Recent Advances and Development. Int. Commun. Heat Mass Transf. 2023, 147, 106922. [Google Scholar] [CrossRef]
- Nazir, H.; Batool, M.; Bolivar Osorio, F.J.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent Developments in Phase Change Materials for Energy Storage Applications: A Review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Riffat, S.; Mempouo, B.; Fang, W. Phase Change Material Developments: A Review. Int. J. Ambient Energy 2015, 36, 102–115. [Google Scholar] [CrossRef]
- Ge, H.; Li, H.; Mei, S.; Liu, J. Low Melting Point Liquid Metal as a New Class of Phase Change Material: An Emerging Frontier in Energy Area. Renew. Sustain. Energy Rev. 2013, 21, 331–346. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, C.Y. A Numerical Investigation of Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Metals. Energy 2011, 36, 5539–5546. [Google Scholar] [CrossRef]
- Korti, A.I.N.; Guellil, H. Experimental Study of the Effect of Inclination Angle on the Paraffin Melting Process in a Square Cavity. J. Energy Storage 2020, 32, 101726. [Google Scholar] [CrossRef]
- Abdulmunem, A.R.; Samin, P.M.; Rahman, H.A.; Hussien, H.A.; Mazali, I.I.; Ghazali, H. Experimental and Numerical Investigations on the Effects of Different Tilt Angles on the Phase Change Material Melting Process in a Rectangular Container. J. Energy Storage 2020, 32, 101914. [Google Scholar] [CrossRef]
- Groulx, D.; Biwole, P.H.; Bhouri, M. Phase Change Heat Transfer in a Rectangular Enclosure as a Function of Inclination and Fin Placement. Int. J. Therm. Sci. 2020, 151, 106260. [Google Scholar] [CrossRef]
- Fekadu, B.; Assaye, M. Enhancement of Phase Change Materials Melting Performance in a Rectangular Enclosure under Different Inclination Angle of Fins. Case Stud. Therm. Eng. 2021, 25, 100968. [Google Scholar] [CrossRef]
- Li, H.; Hu, C.; He, Y.; Tang, D.; Wang, K.; Hu, X. Influence of Model Inclination on the Melting Behavior of Graded Metal Foam Composite Phase Change Material: A Pore-Scale Study. J. Energy Storage 2021, 44, 103537. [Google Scholar] [CrossRef]
- Huang, S.; Lu, J.; Li, Y. Numerical Study on the Influence of Inclination Angle on the Melting Behaviour of Metal Foam-PCM Latent Heat Storage Units. Energy 2022, 239, 122489. [Google Scholar] [CrossRef]
- Variji, N.; Siavashi, M.; Tahmasbi, M.; Bidabadi, M. Analysis of the Effects of Porous Media Parameters and Inclination Angle on the Thermal Storage and Efficiency Improvement of a Photovoltaic-Phase Change Material System. J. Energy Storage 2022, 50, 104690. [Google Scholar] [CrossRef]
- Alnakeeb, M.A.; Sorour, M.M.; Alkadi, A.O.; Gomaa, A.A.; ELghoul, A.M.; Zaytoun, M.M. The Influence of Elliptic Aspect Ratio and Inclination Angle on the Melting Characteristic of Phase Change Material in Concentric Cylindrical Enclosure. J. Energy Storage 2023, 62, 106832. [Google Scholar] [CrossRef]
- Khademi, A.; Mehrjardi, S.A.A.; Said, Z.; Saidur, R.; Ushak, S.; Chamkha, A.J. A Comparative Study of Melting Behavior of Phase Change Material with Direct Fluid Contact and Container Inclination. Energy Nexus 2023, 10, 100196. [Google Scholar] [CrossRef]
- Rashid, F.L.; Hussein, A.K.; Malekshah, E.H.; Abderrahmane, A.; Guedri, K.; Younis, O. Review of Heat Transfer Analysis in Different Cavity Geometries with and without Nanofluids. Nanomaterials 2022, 12, 2481. [Google Scholar] [CrossRef]
- Tiji, M.E.; Al-Azzawi, W.K.; Mohammed, H.I.; Dulaimi, A.; Rashid, F.L.; Mahdi, J.M.; Majdi, H.S.; Talebizadehsardari, P.; Ali, H.M. Thermal Management of the Melting Process in a Latent Heat Triplex Tube Storage System Using Different Configurations of Frustum Tubes. J. Nanomater. 2022, 2022, 7398110. [Google Scholar] [CrossRef]
- Arıcı, M.; Bilgin, F.; Nižetić, S.; Karabay, H. PCM Integrated to External Building Walls: An Optimization Study on Maximum Activation of Latent Heat. Appl. Therm. Eng. 2020, 165, 114560. [Google Scholar] [CrossRef]
- Khalaf, A.F.; Rashid, F.L.; Basem, A.; Abbas, M.H. Numerical Study of the Effect of Air Bubble Location on the PCM Melting Process in a Rectangular Cavity. Math. Model. Eng. Probl. 2023, 10, 71–83. [Google Scholar] [CrossRef]
- Ahmad, S.; Ali, K.; Sajid, T.; Bashir, U.; Lafta Rashid, F.; Kumar, R.; Ali, M.R.; Hendy, A.S.; Darvesh, A. A Novel Vortex Dynamics for Micropolar Fluid Flow in a Lid-Driven Cavity with Magnetic Field Localization—A Computational Approach. Ain Shams Eng. J. 2024, 15, 102448. [Google Scholar] [CrossRef]
- Ahmad, S.; Ali, K.; Ayub, A.; Bashir, U.; Rashid, F.L.; Aryanfar, Y.; Ali, M.R.; Hendy, A.S.; Shah, I.; Ali, L. Localized Magnetic Fields and Their Effects on Heat Transfer Enhancement and Vortices Generation in Tri-Hybrid Nanofluids: A Novel Investigation. Case Stud. Therm. Eng. 2023, 50, 103408. [Google Scholar] [CrossRef]
- Hammid, S.; Naima, K.; Ikumapayi, O.M.; Kezrane, C.; Liazid, A.; Asad, J.; Rahman, M.H.; Rashid, F.L.; Hussien, N.A.; Menni, Y. Overall Assessment of Heat Transfer for a Rarefied Flow in a Microchannel with Obstacles Using Lattice Boltzmann Method. Comput. Model. Eng. Sci. 2024, 138, 273–299. [Google Scholar] [CrossRef]
- Al Siyabi, I.; Khanna, S.; Mallick, T.; Sundaram, S. An Experimental and Numerical Study on the Effect of Inclination Angle of Phase Change Materials Thermal Energy Storage System. J. Energy Storage 2019, 23, 57–68. [Google Scholar] [CrossRef]
Properties | RT42 |
---|---|
Density, ρ | 760 (kg/m3) |
Specific heat capacity, Cp | 2 000 (J/kgK) |
Thermal conductivity, k | 0.2 (W/mK) |
Dynamic viscosity, μ | 0.02351 (kg/ms) |
Thermal expansion rate, α | 0.0005 (1/K) |
Latent heat, L | 165 000 (J/kg) |
Melting temperature, Tm | 311.15–315.15 (K) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, F.L.; Khalaf, A.F.; Al-Obaidi, M.A.; Dulaimi, A.; Ameen, A. Investigating the Impact of Cell Inclination on Phase Change Material Melting in Square Cells: A Numerical Study. Materials 2024, 17, 633. https://doi.org/10.3390/ma17030633
Rashid FL, Khalaf AF, Al-Obaidi MA, Dulaimi A, Ameen A. Investigating the Impact of Cell Inclination on Phase Change Material Melting in Square Cells: A Numerical Study. Materials. 2024; 17(3):633. https://doi.org/10.3390/ma17030633
Chicago/Turabian StyleRashid, Farhan Lafta, Abbas Fadhil Khalaf, Mudhar A. Al-Obaidi, Anmar Dulaimi, and Arman Ameen. 2024. "Investigating the Impact of Cell Inclination on Phase Change Material Melting in Square Cells: A Numerical Study" Materials 17, no. 3: 633. https://doi.org/10.3390/ma17030633
APA StyleRashid, F. L., Khalaf, A. F., Al-Obaidi, M. A., Dulaimi, A., & Ameen, A. (2024). Investigating the Impact of Cell Inclination on Phase Change Material Melting in Square Cells: A Numerical Study. Materials, 17(3), 633. https://doi.org/10.3390/ma17030633