Artificial Neural Networks and Experimental Analysis of the Resistance Spot Welding Parameters Effect on the Welded Joint Quality of AISI 304
Abstract
:1. Introduction
2. Materials and Experimental Procedures
2.1. Materials and Welding Process
2.2. Testing and Characterization
3. Artificial Neural Network (ANN) Modeling
3.1. Backpropagation (BP) Neural Network
3.2. Transfer and Training Functions
3.3. Data Distribution and Validation Metrics
4. Results and Discussions
4.1. Weld Mechanical Performance
4.2. Nugget Diameter Observations
4.3. Artificial Neural Network Prediction
4.3.1. One-Output Neural Network
4.3.2. Two-Output Neural Network Model
4.3.3. Mathematical Equations
4.4. Failure Mechanism
4.5. Micro-Hardness Distribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aslanlar, S. The effect of nucleus size on mechanical properties in electrical resistance spot welding of sheets used in automotive industry. Mater. Des. 2006, 27, 125–131. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, H.; Hu, S.J. Relationships between quality and attributes of spot welds. Weld. J. 2003, 82, 72S–77S. [Google Scholar]
- Monrrabal, G.; Bautista, A.; Guzman, S.; Gutierrez, C.; Velasco, F. Influence of the cold working induced martensite on the electro chemical behavior of AISI 304 stainless steel surfaces. J. Mater. Res. Technol. 2019, 8, 1335–1346. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Z.; Yaer, X.; Tong, Z.; Du, Z. High mechanical performance of AISI304 stainless steel plate by surface nano crystallization and microstructural evolution during the explosive impact treatment. J. Mater. Res. Technol. 2019, 8, 609–614. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Nascimento, L.F.C.; Lima, É.P., Jr.; Luz, F.S.; Lima, E.S.; Braga, F.O. Strengthening of stainless steel weldment by high temperature precipitation. J. Mater. Res. Technol. 2017, 6, 385–389. [Google Scholar] [CrossRef]
- Ramkumar, K.D.; Singh, A.; Raghuvanshi, S.; Bajpai, A.; Solanki, T.; Arivarasu, M.; Arivazhagan, N.; Narayanan, S. Metallurgical and mechanical characterization of dissimilar welds of austenitic stainless steel and super-duplex stainless steel—A comparative study. J. Manuf. Process. 2015, 19, 212–232. [Google Scholar] [CrossRef]
- Singh, J.; Shahi, A.S. Weld joint design and thermal aging influence on the metallurgical, sensitization and pitting corrosion behavior of AISI 304L stainless steel welds. J. Manuf. Process. 2018, 33, 126–135. [Google Scholar] [CrossRef]
- Verma, J.; Taiwade, R.V. Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review. J. Manuf. Process. 2017, 25, 134–152. [Google Scholar] [CrossRef]
- Liu, W.; Fan, H.; Guo, X.; Guo, X.; Huang, Z.; Han, X. Mechanical properties of resistance spot welded components of high strength austenitic stainless steel. J. Mater. Sci. Technol. 2016, 32, 561–565. [Google Scholar] [CrossRef]
- Li, Y.B.; Zhang, Q.X.; Qi, L.; David, S.A. Improving austenitic stainless steel resistance spot weld quality using external magnetic field. Sci. Technol. Weld. Join. 2018, 23, 619–627. [Google Scholar] [CrossRef]
- Martín, Ó.; Tiedra, P.D.; López, M.; San-Juan, M.; García, C.; Martín, F.; Blanco, Y. Quality prediction of resistance spot welding joints of 304 austenitic stainless steel. Mater. Des. 2009, 30, 68–77. [Google Scholar] [CrossRef]
- Feng, Q.B.; Li, Y.B.; Carlson, B.E.; Lai, X.M. Study of resistance spot weldability of a new stainless steel. Sci. Technol. Weld. Join. 2018, 24, 101–111. [Google Scholar] [CrossRef]
- Chabica, M.E.; Williamson, D.L.; Wei, R.; Wilbur, P.J. Microstructure and corrosion of nitrogen implanted AISI 304 stainless steel. Surf. Coat. Technol. 1992, 51, 24–29. [Google Scholar] [CrossRef]
- Trillo, E.A.; Murr, L.E. Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel. Acta Mater. 1998, 47, 235–245. [Google Scholar] [CrossRef]
- Bhat, S.D.; Vijeesh, V.; Achary, P.; Rao, M. Investigation of thin sheet stainless steel resistance spot welds: Effect of weld current on nugget failure and microstructure. Mater. Today Proc. 2021, 35, 361–365. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Li, Y.; Luo, Z.; Zhang, X. A comparative study between the mechanical and microstructural properties of resistance spotwelding joints among ferritic AISI 430 andaustenitic AISI 304 stainless steel. J. Mater. Res. Technol. 2020, 9, 574–583. [Google Scholar] [CrossRef]
- Fukumoto, S.; Fujiwara, K.; Toji, S.; Yamamoto, A. Small-scale resistance spot welding of austenitic stainless steels. Mater. Sci. Eng. A 2008, 492, 243–249. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Wang, S.; Han, X.; Li, Y.; David, S.A. Effect of adhesive sealant on resistance spot welding of 301L stainless steel. J. Manuf. Process. 2020, 51, 62–72. [Google Scholar] [CrossRef]
- Özyürek, D. An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel. Mater. Des. 2008, 29, 597–603. [Google Scholar] [CrossRef]
- Kianersi, D.; Mostafaei, A.; Amadeh, A.A. Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations. Mater. Des. 2014, 61, 251–263. [Google Scholar] [CrossRef]
- Kocabekir, B.; Kacar, R.; Gunduz, S.; Hayat, F. An effect of heat input, weld atmosphere and weld cooling conditions on the resistance spot weldability of 316L austenitic stainless steel. J. Mater. Process. Technol. 2008, 195, 327–335. [Google Scholar] [CrossRef]
- Alizadeh-Sh, M.; Marashi, S.P.H.; Pouranvari, M. Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties. Mater. Des. 2014, 56, 258–263. [Google Scholar] [CrossRef]
- Lakshminarayanan, A.K.; Balasubramanian, V. Evaluation of microstructure and mechanical properties of laser beam welded AISI 409M grade ferritic stainless steel. J. Iron Steel Res. Int. 2012, 19, 72–78. [Google Scholar] [CrossRef]
- Marashi, P.; Pouranvari, M.; Sanaee, S.M.H.; Abedi, A.; Abootalebi, S.H.; Goodarzi, M. Relationship between failure behaviour and weld fusion zone attributes of austenitic stainless steel resistance spot welds. Mater. Sci. Technol. 2008, 24, 1506–1512. [Google Scholar] [CrossRef]
- Pouranvari, M.; Marashi, S.P.H.; Safanama, D.S. Failure mode transition in AHSS resistance spot welds. Part II: Experimental investigation and model validation. Mater. Sci. Eng. A 2011, 528, 8344–8352. [Google Scholar] [CrossRef]
- Midhun, S.; Dr, C.; Ramesh, K.; Chellamuthu, R. Yokeswaran. Dissimilar resistance spot welding process on AISI 304 and AISI 202 by investigation metals. Mater. Today Proc. 2022, 69 Pt 3, 1213–1217. [Google Scholar] [CrossRef]
- Khuenkaew, T.; Kanlayasiri, K. Resistance Spot Welding of SUS316L Austenitic/SUS425 Ferritic Stainless Steels: Weldment Characteristics, Mechanical Properties, Phase Transformation and Solidification. Metals 2019, 9, 710. [Google Scholar] [CrossRef]
- Liu, W.; Wang, R.; Han, J.; Xu, X.; Li, Q. Microstructure and mechanical performance of resistance spot-welded cold-rolled high strength austenitic stainless steel. J. Mater. Process. Technol. 2010, 210, 1956–1961. [Google Scholar] [CrossRef]
- Moshayedi, H.; Sattari-Far, I. Resistance spot welding and the effects of welding time and current on residual stresses. J. Mater. Process. Technol. 2014, 214, 2545–2552. [Google Scholar] [CrossRef]
- Krishnan, V.; Ayyasamy, E.; Paramasivam, V. Influence of resistance spot welding process parameters on dissimilar austenitic and duplex stainless steel welded joints. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 12–23. [Google Scholar] [CrossRef]
- Mezher, M.T.; Saad, M.L.; Barrak, O.S.; Hussein, S.K.; Shakir, R.A. Multi-coupled field simulation and experimental study of AISI 316L stainless steel using resistance spot welding. J. Mech. Eng. Res. Dev. 2021, 44, 150–160. [Google Scholar]
- Arunchai, T.; Sonthipermpoon, K.; Apichayakul, P.; Tamee, K. Resistance Spot Welding Optimization Based on Artificial Neural Network. Int. J. Manuf. Eng. 2014, 2014, 154784. [Google Scholar] [CrossRef]
- Pal, T.K.; Chattopadhyay, K. Resistance spot weldability and high cycle fatigue behaviour of martensitic (M190) steel sheet. Fatigue Fract. Eng. Mater. Struct. 2010, 34, 46–52. [Google Scholar] [CrossRef]
- Mansor, M.S.M.; Yusof, F.; Ariga, T.; Miyashita, Y. Microstructure and mechanical properties of micro-resistance spot welding between stainless steel 316L and Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2018, 96, 2567–2581. [Google Scholar] [CrossRef]
- Mezher, M.T.; Carou, D.; Pereira, A. Exploring resistance spot welding for grade 2 titanium alloy: Experimental investigation and artificial neural Network modeling. Metals 2024, 14, 308. [Google Scholar] [CrossRef]
- Martin, O.; Tiedra, P.; Lopez, M. Artificial neural networks for pitting potential prediction of resistance spot welding joints of AISI 304 austenitic stainless steel. Corros. Sci. 2010, 52, 2397–2402. [Google Scholar] [CrossRef]
- Wan, X.; Wang, Y.; Zhao, D.; Huang, Y. A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding. Mech. Syst. Signal Process. 2017, 93, 634–644. [Google Scholar] [CrossRef]
- Ghafarallahi, E.; Farrahi, G.H.; Amiri, N. Acoustic simulation of ultrasonic testing and neural network used for diameter prediction of three-sheet spot welded joints. J. Manuf. Process. 2021, 64, 1507–1516. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, K.; Zhao, J.; Duan, S.; Zhan, X. Effect of heat input on microstructure and corrosion resistance in heat affected zone of 304 stainless steel joint by laser welding. Mater. Today Commun. 2022, 30, 103054. [Google Scholar] [CrossRef]
- Xie, W.; Tu, H.; Nian, K.; Zhang, D.; Zhang, X. Microstructure and mechanical properties of Flexible Ring Mode laser welded 304 stainless steel. Opt. Laser Technol. 2024, 174, 110563. [Google Scholar] [CrossRef]
- De Tiedra, P.; Martín, Ó. Effect of post-welding sensitisation on the degree of sensitisation of the welding zones of AISI 304 resistance spot welding joints studied by using an electrochemical minicell. Corros. Eng. Sci. Technol. Int. J. Corros. Process. Corros. Control. 2023, 58, 588–597. [Google Scholar] [CrossRef]
- Arsyad, H.; Syahid, M.; Renreng, I. Optimization of welding parameters for resistance spot welding with variations in the roughness of the surface of the aisi 304 stainless steel joint to increase joint quality. Int. J. Mech. Eng. Robot. Res. 2022, 11, 877–883. [Google Scholar]
- Sadeghian, B.; Taherizadeh, A.; Salehi, T.; Sadeghi, B.; Cavaliere, P. Simulation and microstructure prediction of resistance spot welding of stainless steel to carbon steel. Metals 2022, 12, 1898. [Google Scholar] [CrossRef]
- Zheng, B.; Wu, D.; Wang, J.; Shu, G. Study on ductile fracture behaviors of stainless steel S30408 and its weld. J. Constr. Steel Res. 2024, 214, 108498. [Google Scholar] [CrossRef]
- ANSI/AWS C1.1M/C1.1; Recommended Practices for Resistance Welding. American Welding Society: Doral, NW, USA, 2012.
- Luger, G.F. Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th ed.; Pearson Education, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Tosun, N.; Özler, L. A study of tool life in hot machining using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 2002, 124, 99–104. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Thomson, P.F.; Flitman, A. A neural networks approach to investigating the geometrical influence on wrinkling in sheet metal forming. J. Mater. Process. Technol. 2000, 105, 215–220. [Google Scholar] [CrossRef]
- Cheng, P.J.; Lin, S.C. Using neural networks to predict bending angle of sheet metal formed by laser. Int. J. Mach. Tools Manuf. 2000, 40, 1185–1197. [Google Scholar] [CrossRef]
- Mezher, M.T.; Shakir, R.A. Modelling and evaluation of the post-hardness and forming limit diagram in the single point incremental hole flanging (SPIHF) process using ANN, FEM and experimental. Results Eng. 2023, 20, 101613. [Google Scholar] [CrossRef]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Deep Learning Toolbox Getting Started Guide; Technical Report; MathWorks: Natick, MA, USA, 2020. [Google Scholar]
- Shahin, M.; Maier, H.R.; Jaksa, M.B. Evolutionary Data Division Methods for Developing Artificial Neural Network Models in Geotechnical Engineering; Department of Civil and Environmental Engineering, University of Adelaide: Adelaide, Australia, 2000; p. R171. [Google Scholar]
- Zhang, G.; Eddy Patuwo, B.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Chakraborty, A.; Roy, S.; Banerjee, R. An experimental based ANN approach in mapping performance- emission characteristics of a diesel engine operating in dual-fuel mode with LPG. J. Nat. Gas Sci. Eng. 2016, 28, 15–30. [Google Scholar] [CrossRef]
- Kearns, W.H. Welding Processes, AWS Welding Handbook, 7th ed.; American Welding Society; Macmillan Press Ltd.: London, UK, 1980; Volume 3, pp. 1–55. [Google Scholar]
- Rathbun, R.W.; Matlock, D.K.; Speer, J.G. Fatigue behavior of spot welded high-strength sheet steels. Weld. J. 2003, 82, 207/S–218/S. [Google Scholar]
- Pouranvari, M.; Marashi, S.P.H. Failure of resistance spot welds: Tensile shear versus coach peel loading conditions. Ironmak. Steelmak. Process. Prod. Appl. 2012, 39, 104–111. [Google Scholar] [CrossRef]
- Kearns, W.H. Metals and Their Weldability, AWS Welding Handbook, 7th ed.; American Welding Society: Doral, FL, USA, 1982; Volume 4, pp. 76–146. [Google Scholar]
- Uijl, N.J.D.; Smith, S.; Goos, C.; van der Aa, E.; Moolevliet, T.; van der Veldt, T. Failure modes of resistance spot welded advanced high strength steels. In Proceedings of the 5th International Seminar on Advances in Resistance Welding, Toronto, ON, Canada, 24–26 September 2008; SWANTEC Software and Engineering ApS and Huys Industries Ltd.: Lyngby, Denmark, 2008; pp. 78–104. [Google Scholar] [CrossRef]
- Uijl, N.J.D.; Smith, S. Resistance spot welding of advanced high strength steels for the automotive industry. In Proceedings of the 4th 5th International Seminar on Advances in Resistance Welding, Wels, Austria, 14–16 November 2006; SWANTEC Software and Engineering ApS and FRONIUS International GmbH: Lyngby, Denmark, 2006; pp. 30–60. [Google Scholar]
- Joaquin, A.; Elliott, A.N.A.; Jiang, C. Reducing shrinkage voids in resistance spot welds. Weld. J. 2007, 86, 24–27. [Google Scholar]
- Kaya, Y.; Kahraman, N. The effects of electrode force, welding current and welding time on the resistance spot weldability of pure titanium. Int. J. Adv. Manuf. Technol. 2012, 60, 127–134. [Google Scholar] [CrossRef]
- Pouranvari, M. Failure mode transition in similar and dissimilar resistance spot welds of HSLA and low carbon steels. Can. Metall. Q. 2012, 51, 67–74. [Google Scholar] [CrossRef]
- Chao, Y.J. Failure mode of spot welds: Interfacial versus pullout. Sci. Technol. Weld. Join. 2003, 8, 133–137. [Google Scholar]
- Pouranvari, M.; Marashi, P.; Goodarzi, M.; Bahmanpour, H. Metallurgical factors affecting failure mode of resistance spot welds. Mater. Sci. Technol. 2008, 26, 1137–1144. [Google Scholar] [CrossRef]
- Tumuluru, M. Resistance spot weld performance and weld failure modes for dual phase and TRIP steels. In Failure Mechanisms of Advanced Welding Processes; Woodhead Publishing Limited: Cambridge, UK, 2010; pp. 43–46. [Google Scholar] [CrossRef]
- Pouranvari, M.; Marashi, S.P.H.; Mousavizadeh, S.M. Failure mode transition and mechanical properties of similar and dissimilar resistance spot welds of DP600 and low carbon steels. Sci. Technol. Weld. Join. 2010, 15, 625–631. [Google Scholar] [CrossRef]
- Khan, M.I.; Kuntz, M.L.; Zhou, Y. Effects of weld microstructure on static and impact performance of resistance spot welded joints in advanced high strength steels. Sci. Technol. Weld. Join. 2008, 13, 294–304. [Google Scholar] [CrossRef]
- Pouranvari, M. Influence of welding parameters on peak load and energy absorption of dissimilar resistance spot welds of DP600 and AISI 1008 steels. Can. Metall. Q. 2011, 50, 381–388. [Google Scholar] [CrossRef]
- Sun, X.; Stephens, E.V.; Khaleel, M.A. Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions. Eng. Fail. Anal. 2008, 15, 356–367. [Google Scholar] [CrossRef]
- Rivett, R.M. Assessment of Resistance Spot Weld in Low Carbon and High Strength Steel Sheet–Part 1 Static Properties; Research Report; The Welding Institute: Cambridge, UK, 1982. [Google Scholar] [CrossRef]
Thickness (mm) | Length (mm) | Width (mm) | Overlap Region (mm) |
---|---|---|---|
0.5 | 76 | 16 | 16 |
1 | 100 | 25 | 25 |
Tensile Strength (MPa) | Yield Strength (MPa) | Poisson’s Ratio | Young’s Modulus (GPa) | Elongation (%) |
---|---|---|---|---|
505 | 215 | 0.29 | 193 | 40 |
Element | C | Mn | P | S | Si | Cr | Ni | Cu | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|---|
wt.% | 0.08 | 2.0 | 0.04 | 0.03 | 1.0 | 18 | 8 | 0.75 | 0.75 | Balance |
Trial No. | Welding Cases | Welding Current (A) | Pressure (bar) | Welding Time (s) | Squeeze Time (s) | Holding Time (s) | Pulse Welding (−) | ||
---|---|---|---|---|---|---|---|---|---|
1 | D1 | G1 | H1 | 5000 | 2.0 | 0.6 | 0.6 | 0.50 | 1 |
2 | D2 | G2 | H2 | 5000 | 3.5 | 0.8 | 0.8 | 0.75 | 2 |
3 | D3 | G3 | H3 | 5000 | 5.0 | 1.0 | 1 | 1.00 | 3 |
4 | D4 | G4 | H4 | 5000 | 6.5 | 1.2 | 1.2 | 1.25 | 4 |
5 | D5 | G5 | H5 | 5000 | 8.0 | 1.4 | 1.4 | 1.50 | 5 |
6 | D6 | G6 | H6 | 5500 | 2.0 | 0.8 | 1.0 | 1.25 | 5 |
7 | D7 | G7 | H7 | 5500 | 3.5 | 1.0 | 1.2 | 1.50 | 1 |
8 | D8 | G8 | H8 | 5500 | 5.0 | 1.2 | 1.4 | 0.50 | 2 |
9 | D9 | G9 | H9 | 5500 | 6.5 | 1.4 | 0.6 | 0.75 | 3 |
10 | D10 | G10 | H10 | 5500 | 8.0 | 0.6 | 0.8 | 1.00 | 4 |
11 | D11 | G11 | H11 | 6000 | 2.0 | 1.0 | 1.4 | 0.75 | 4 |
12 | D12 | G12 | H12 | 6000 | 3.5 | 1.2 | 0.6 | 1.00 | 5 |
13 | D13 | G13 | H13 | 6000 | 5.0 | 1.4 | 0.8 | 1.25 | 1 |
14 | D14 | G14 | H14 | 6000 | 6.5 | 0.6 | 1.0 | 1.50 | 2 |
15 | D15 | G15 | H15 | 6000 | 8.0 | 0.8 | 1.2 | 0.50 | 3 |
16 | D16 | G16 | H16 | 6500 | 2.0 | 1.2 | 0.8 | 1.50 | 3 |
17 | D17 | G17 | H17 | 6500 | 3.5 | 1.4 | 1.0 | 0.50 | 4 |
18 | D18 | G18 | H18 | 6500 | 5.0 | 0.6 | 1.2 | 0.75 | 5 |
19 | D19 | G19 | H19 | 6500 | 6.5 | 0.8 | 1.4 | 1.00 | 1 |
20 | D20 | G20 | H20 | 6500 | 8.0 | 1.0 | 0.6 | 1.25 | 2 |
21 | D21 | G21 | H21 | 7000 | 2.0 | 1.4 | 1.2 | 1.00 | 2 |
22 | D22 | G22 | H22 | 7000 | 3.5 | 0.6 | 1.4 | 1.25 | 3 |
23 | D23 | G23 | H23 | 7000 | 5.0 | 0.8 | 0.6 | 1.50 | 4 |
24 | D24 | G24 | H24 | 7000 | 6.5 | 1.0 | 0.8 | 0.50 | 5 |
25 | D25 | G25 | H25 | 7000 | 8.0 | 1.2 | 1.0 | 0.75 | 1 |
Sample No. | Welding Case | ||
---|---|---|---|
D | G | H | |
1 | Interfacial | 3.2 | 4.1 |
2 | 4.1 | 3.5 | 5 |
3 | 4.3 | 3.9 | 4.2 |
4 | 5.2 | 3.4 | 4.8 |
5 | 4.2 | 3.8 | 3.8 |
6 | Partial | 3.7 | 3.1 |
7 | 3.9 | 2.5 | 3.7 |
8 | 5.6 | 3.2 | 3.7 |
9 | 4.5 | 3.6 | 3.5 |
10 | 4.9 | 2.9 | 3.9 |
11 | 5.4 | 3.4 | 4.6 |
12 | 5.1 | 3.3 | 3.2 |
13 | 5.1 | 3.2 | 3.5 |
14 | 5.3 | 3.4 | 4.4 |
15 | Interfacial | 3.4 | 3.7 |
16 | 5.3 | 4.1 | 4.5 |
17 | 5.4 | 3.3 | 3 |
18 | 4.8 | 3.6 | 4.4 |
19 | Interfacial | 3 | 2.9 |
20 | 4.2 | 4.2 | 4.7 |
21 | 4.1 | 4.4 | 5.5 |
22 | 4.6 | 2.9 | 4.8 |
23 | 4.6 | 3.9 | 4.9 |
24 | 4.4 | 4.1 | 4.4 |
25 | 5.3 | 3.3 | 4.8 |
Training Function | Transfer Function | MSE | R2 |
---|---|---|---|
Trainlm | Logsig | 0.01908 | 0.99788 |
Tansig | 0.05653 | 0.99407 | |
Purelin | 0.26678 | 0.97076 | |
Trainscg | Logsig | 0.04536 | 0.99514 |
Tansig | 0.05289 | 0.99416 | |
Purelin | 0.29513 | 0.96714 | |
Traincgf | Logsig | 0.07000 | 0.99222 |
Tansig | 0.07847 | 0.99144 | |
Purelin | 0.25318 | 0.97228 | |
Traincgb | Logsig | 0.04119 | 0.99567 |
Tansig | 0.05444 | 0.99408 | |
Purelin | 0.2519 | 0.97179 | |
Traincgp | Logsig | 0.05179 | 0.99424 |
Tansig | 0.06176 | 0.99318 | |
Purelin | 0.24972 | 0.9721 | |
Trainbfg | Logsig | 0.03759 | 0.99592 |
Tansig | 0.08850 | 0.99014 | |
Purelin | 0.255 | 0.97156 | |
Trainrp | Logsig | 0.03735 | 0.99617 |
Tansig | 0.06900 | 0.99245 | |
Purelin | 0.25375 | 0.97185 | |
Trainbr | Logsig | 0.28144 | 0.97185 |
Tansig | 0.33608 | 0.9621 | |
Purelin | 0.338416 | 0.96205 | |
Trainoss | Logsig | 0.06980 | 0.99238 |
Tansig | 0.09637 | 0.9894 | |
Purelin | 0.27603 | 0.97016 | |
Traingd | Logsig | 0.15347 | 0.98327 |
Tansig | 0.32004 | 0.97016 | |
Purelin | 0.32920 | 0.96428 | |
Traingdm | Logsig | 0.24612 | 0.9724 |
Tansig | 0.32344 | 0.97004 | |
Purelin | 0.35668 | 0.96433 | |
Traingda | Logsig | 0.06624 | 0.9927 |
Tansig | 0.32344 | 0.97004 | |
Purelin | 0.35668 | 0.96433 | |
Traingdx | Logsig | 0.17380 | 0.98123 |
Tansig | 0.26535 | 0.97032 | |
Purelin | 0.29321 | 0.96812 |
Training Function | Transfer Function | MSE | R2 |
---|---|---|---|
Trainlm | Logsig | 0.02580 | 0.99091 |
Tansig | 0.13031 | 0.95329 | |
Purelin | 0.83903 | 0.7047 | |
Trainscg | Logsig | 0.17665 | 0.93578 |
Tansig | 0.05820 | 0.98032 | |
Purelin | 0.81019 | 0.73527 | |
Traincgf | Logsig | 0.139132 | 0.94909 |
Tansig | 0.18729 | 0.93096 | |
Purelin | 0.84797 | 0.72979 | |
Traincgb | Logsig | 0.11641 | 0.95858 |
Tansig | 0.09590 | 0.96821 | |
Purelin | 0.72475 | 0.8113 | |
Traincgp | Logsig | 0.19795 | 0.92852 |
Tansig | 0.21466 | 0.92476 | |
Purelin | 0.82022 | 0.73566 | |
Trainbfg | Logsig | 0.03759 | 0.95135 |
Tansig | 0.10640 | 0.96223 | |
Purelin | 0.86485 | 0.72187 | |
Trainrp | Logsig | 0.05542 | 0.98073 |
Tansig | 0.10463 | 0.96392 | |
Purelin | 0.84829 | 0.71437 | |
Trainbr | Logsig | 0.29733 | 0.70413 |
Tansig | 0.301 | 0.69975 | |
Purelin | 0.30567 | 0.69408 | |
Trainoss | Logsig | 0.10260 | 0.96309 |
Tansig | 0.11626 | 0.95817 | |
Purelin | 0.81678 | 0.73098 | |
Traingd | Logsig | 0.24465 | 0.91086 |
Tansig | 0.27433 | 0.89832 | |
Purelin | 1.01768 | 0.65619 | |
Traingdm | Logsig | 0.19487 | 0.92905 |
Tansig | 0.19829 | 0.92759 | |
Purelin | 0.84687 | 0.71004 | |
Traingda | Logsig | 0.22783 | 0.91632 |
Tansig | 0.18138 | 0.93427 | |
Purelin | 0.84176 | 0.70133 | |
Traingdx | Logsig | 0.19044 | 0.93128 |
Tansig | 0.22155 | 0.92031 | |
Purelin | 0.81272 | 0.72265 |
Training Function | Transfer Function | MSE | R2 |
---|---|---|---|
Trainlm | Logsig | 0.05172 | 0.99183 |
Tansig | 0.17230 | 0.97331 | |
Purelin | 0.55255 | 0.91556 | |
Trainscg | Logsig | 0.26193 | 0.95646 |
Tansig | 0.32907 | 0.94515 | |
Purelin | 0.63906 | 0.8975 | |
Traincgf | Logsig | 0.22655 | 0.96265 |
Tansig | 0.32250 | 0.94737 | |
Purelin | 0.57183 | 0.90784 | |
Traincgb | Logsig | 0.23511 | 0.95952 |
Tansig | 0.32801 | 0.94826 | |
Purelin | 0.7893 | 0.88304 | |
Traincgp | Logsig | 0.20792 | 0.96757 |
Tansig | 0.29317 | 0.95412 | |
Purelin | 0.73110 | 0.88127 | |
Trainbfg | Logsig | 0.23088 | 0.96155 |
Tansig | 0.40197 | 0.93619 | |
Purelin | 0.89357 | 0.87887 | |
Trainrp | Logsig | 0.38726 | 0.93603 |
Tansig | 0.49935 | 0.91774 | |
Purelin | 0.84987 | 0.86307 | |
Trainbr | Logsig | 0.34984 | 0.94128 |
Tansig | 0.49236 | 0.91857 | |
Purelin | 0.86289 | 0.84892 | |
Trainoss | Logsig | 0.16953 | 0.97305 |
Tansig | 0.26288 | 0.95616 | |
Purelin | 0.79617 | 0.86795 | |
Traingd | Logsig | 0.70485 | 0.88168 |
Tansig | 0.71660 | 0.87863 | |
Purelin | 1.0844 | 0.80303 | |
Traingdm | Logsig | 0.76383 | 0.86808 |
Tansig | 0.92812 | 0.85712 | |
Purelin | 1.1785 | 0.7926 | |
Traingda | Logsig | 0.54909 | 0.90771 |
Tansig | 0.82539 | 0.86649 | |
Purelin | 0.90740 | 0.85849 | |
Traingdx | Logsig | 0.47430 | 0.92043 |
Tansig | 0.58618 | 0.91149 | |
Purelin | 0.82792 | 0.86647 |
One-Output Structure with Trainlm and Logsig | ||||||
---|---|---|---|---|---|---|
Validation Metrics | MSE | R2 | ME | MAE | RMSE | MRE |
Shear force | 0.01908 | 0.99788 | −0.00187 | 0.08953 | 0.13813 | 5.55869 × 10−6 |
Nugget diameter | 0.02580 | 0.99091 | −0.01059 | 0.10396 | 0.16063 | 3.6445 × 10−5 |
Two-output structure with Trainlm and Logsig | ||||||
Shear force and nugget diameter | 0.05172 | 0.99183 | −0.0343 | 0.15726 | 0.22743 | 5.4585 × 10−5 |
b1 | b2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
6.0593 | 1.3804 | ||||||||
−4.3523 | −0.18468 | ||||||||
−0.57682 | 1.109 | ||||||||
−1.9088 | |||||||||
2.0805 | |||||||||
2.6624 | |||||||||
1.125 | |||||||||
3.0614 | |||||||||
−5.0681 | |||||||||
−2.5899 | |||||||||
IW | |||||||||
−2.0687 | 2.9401 | −2.168 | 0.0038676 | −0.81016 | 0.81156 | ||||
0.75353 | 0.034347 | 1.2038 | 0.15507 | −3.4153 | 2.1785 | ||||
−1.1868 | −2.3461 | −2.8087 | −0.38282 | 2.2392 | 3.7214 | ||||
3.3961 | 1.6705 | −1.066 | −1.3043 | −2.4845 | 3.8159 | ||||
−1.8535 | −5.0655 | −5.5748 | 0.09913 | 1.2594 | −1.298 | ||||
−0.038716 | −6.0105 | −0.96251 | −0.4567 | −2.7778 | 1.6609 | ||||
−0.78585 | −0.94715 | 1.422 | −2.2769 | 1.5962 | 2.8447 | ||||
1.9345 | 1.7366 | −3.5865 | 0.89875 | −1.5641 | −1.5636 | ||||
0.60689 | 2.843 | 0.92038 | 2.6216 | −0.2828 | 0.5321 | ||||
0.05569 | −1.3053 | 3.5661 | 1.3969 | −3.3934 | −0.94312 | ||||
LW | |||||||||
−1.6326 | 1.1531 | 3.4298 | −0.78814 | −2.1214 | −1.2433 | 0.050153 | 0.78538 | −3.7281 | 2.0756 |
−2.129 | 0.31974 | 1.5952 | −1.5102 | −3.2758 | 1.071 | 1.3947 | 3.3428 | 1.1558 | −1.0281 |
−2.805 | 0.25463 | −2.0404 | −0.98168 | −3.1905 | 1.194 | 0.34219 | 2.6929 | −0.72115 | −0.37251 |
b1 | b2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
4.4415 | −0.23673 | ||||||||
2.0865 | 0.82771 | ||||||||
3.0533 | −0.35106 | ||||||||
−2.4003 | |||||||||
2.2273 | |||||||||
0.75977 | |||||||||
3.6923 | |||||||||
−0.97346 | |||||||||
−0.64778 | |||||||||
−5.7068 | |||||||||
IW | |||||||||
2.6346 | −0.53884 | −3.5953 | 4.3189 | 2.0695 | −1.6533 | ||||
−4.214 | 3.6914 | 0.55714 | 6.6269 | 2.1891 | −1.3247 | ||||
−1.0584 | −3.0337 | 1.6359 | −5.4911 | −1.8593 | 2.7159 | ||||
−2.5806 | −4.2608 | 1.3269 | 3.0904 | 0.055187 | −2.3917 | ||||
−7.7207 | 1.8558 | 1.5305 | 2.3453 | −4.317 | 0.21968 | ||||
3.0862 | 3.4386 | −3.5603 | −0.19471 | 2.4631 | −2.9977 | ||||
7.6645 | −4.6628 | 3.1247 | 1.0516 | 1.2497 | −3.3013 | ||||
2.9967 | 2.6921 | 2.5192 | 0.20438 | −1.2481 | 4.1015 | ||||
4.49 | 1.6454 | −0.17563 | 3.4924 | 1.272 | −1.2577 | ||||
−1.5083 | 0.88408 | 1.1391 | 0.71768 | −1.9169 | −0.56682 | ||||
LW | |||||||||
−5.052 | 9.7582 | −0.87758 | 0.75098 | −8.3978 | 0.25209 | 4.3682 | 2.2562 | −6.113 | 1.1958 |
−1.2057 | −0.15235 | 1.4335 | −1.6726 | −0.46344 | −1.8993 | −0.96709 | −1.3038 | 3.2362 | −0.95902 |
0.1269 | 1.3874 | 1.0573 | 2.3768 | −3.2144 | 0.37308 | −1.5729 | 1.3968 | 0.14822 | 0.047946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezher, M.T.; Pereira, A.; Trzepieciński, T.; Acevedo, J. Artificial Neural Networks and Experimental Analysis of the Resistance Spot Welding Parameters Effect on the Welded Joint Quality of AISI 304. Materials 2024, 17, 2167. https://doi.org/10.3390/ma17092167
Mezher MT, Pereira A, Trzepieciński T, Acevedo J. Artificial Neural Networks and Experimental Analysis of the Resistance Spot Welding Parameters Effect on the Welded Joint Quality of AISI 304. Materials. 2024; 17(9):2167. https://doi.org/10.3390/ma17092167
Chicago/Turabian StyleMezher, Marwan T., Alejandro Pereira, Tomasz Trzepieciński, and Jorge Acevedo. 2024. "Artificial Neural Networks and Experimental Analysis of the Resistance Spot Welding Parameters Effect on the Welded Joint Quality of AISI 304" Materials 17, no. 9: 2167. https://doi.org/10.3390/ma17092167
APA StyleMezher, M. T., Pereira, A., Trzepieciński, T., & Acevedo, J. (2024). Artificial Neural Networks and Experimental Analysis of the Resistance Spot Welding Parameters Effect on the Welded Joint Quality of AISI 304. Materials, 17(9), 2167. https://doi.org/10.3390/ma17092167