Stimulation Montage Achieves Balanced Focality and Intensity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Framework and Computational Model
2.2. Optimization Model
2.3. Safety Constraints
2.4. Experiment Design
2.5. Evaluation Metrics
3. Results
3.1. Study with Single Target
3.2. Study with Multiple Targets
3.3. Robustness Study
3.3.1. The Overall Impact of Conductivity Uncertainty
3.3.2. The Impact on Intensity by Conductivity Uncertainty
3.3.3. The Impact on TE by Conductivity Uncertainty
3.3.4. The Impact on Focality by Conductivity Uncertainty
4. Discussion
4.1. Electrode Configuration
4.2. Regularization with Single Lambda and Multi-Lambda
4.3. The Choice of Lambda
4.4. Robustness
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nitsche, M.A.; Boggio, P.S.; Fregni, F.; Pascual-Leone, A. Treatment of Depression with Transcranial Direct Current Stimulation (TDCS): A Review. Exp. Neurol. 2009, 219, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, R.; Bortolomasi, M.; Vergari, M.; Tadini, L.; Salvoro, B.; Giacopuzzi, M.; Barbieri, S.; Priori, A. Transcranial Direct Current Stimulation in Severe, Drug-Resistant Major Depression. J. Affect. Disord. 2009, 118, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Shiozawa, P.; Fregni, F.; Benseñor, I.M.; Lotufo, P.A.; Berlim, M.T.; Daskalakis, J.Z.; Cordeiro, Q.; Brunoni, A.R. Transcranial Direct Current Stimulation for Major Depression: An Updated Systematic Review and Meta-Analysis. Int. J. Neuropsychopharm. 2014, 17, 1443–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebetanz, D.; Klinker, F.; Hering, D.; Koch, R.; Nitsche, M.A.; Potschka, H.; Loscher, W.; Paulus, W.; Tergau, F. Anticonvulsant Effects of Transcranial Direct-Current Stimulation (TDCS) in the Rat Cortical Ramp Model of Focal Epilepsy. Epilepsia 2006, 47, 1216–1224. [Google Scholar] [CrossRef]
- Auvichayapat, N.; Rotenberg, A.; Gersner, R.; Ngodklang, S.; Tiamkao, S.; Tassaneeyakul, W.; Auvichayapat, P. Transcranial Direct Current Stimulation for Treatment of Refractory Childhood Focal Epilepsy. Brain Stimul. 2013, 6, 696–700. [Google Scholar] [CrossRef]
- San-juan, D.; Morales-Quezada, L.; Orozco Garduño, A.J.; Alonso-Vanegas, M.; González-Aragón, M.F.; Espinoza López, D.A.; Vázquez Gregorio, R.; Anschel, D.J.; Fregni, F. Transcranial Direct Current Stimulation in Epilepsy. Brain Stimul. 2015, 8, 455–464. [Google Scholar] [CrossRef]
- Boggio, P.S.; Ferrucci, R.; Rigonatti, S.P.; Covre, P.; Nitsche, M.; Pascual-Leone, A.; Fregni, F. Effects of Transcranial Direct Current Stimulation on Working Memory in Patients with Parkinson’s Disease. J. Neurol. Sci. 2006, 249, 31–38. [Google Scholar] [CrossRef]
- Benninger, D.H.; Lomarev, M.; Lopez, G.; Wassermann, E.M.; Li, X.; Considine, E.; Hallett, M. Transcranial Direct Current Stimulation for the Treatment of Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1105–1111. [Google Scholar] [CrossRef] [Green Version]
- Dagan, M.; Herman, T.; Harrison, R.; Zhou, J.; Giladi, N.; Ruffini, G.; Manor, B.; Hausdorff, J.M. Multitarget Transcranial Direct Current Stimulation for Freezing of Gait in Parkinson’s Disease: Multitarget TDCS for Freezing of Gait in PD. Mov. Disord. 2018, 33, 642–646. [Google Scholar] [CrossRef]
- Vines, B.W.; Cerruti, C.; Schlaug, G. Dual-Hemisphere TDCS Facilitates Greater Improvements for Healthy Subjects’ Non-Dominant Hand Compared to Uni-Hemisphere Stimulation. BMC Neurosci. 2008, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Sparing, R.; Dafotakis, M.; Meister, I.G.; Thirugnanasambandam, N.; Fink, G.R. Enhancing Language Performance with Non-Invasive Brain Stimulation—A Transcranial Direct Current Stimulation Study in Healthy Humans. Neuropsychologia 2008, 46, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, Z.; Pisoni, A.; Papagno, C. Transcranial Direct Current Stimulation over Broca’s Region Improves Phonemic and Semantic Fluency in Healthy Individuals. Neuroscience 2011, 183, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Coffman, B.A.; Clark, V.P.; Parasuraman, R. Battery Powered Thought: Enhancement of Attention, Learning, and Memory in Healthy Adults Using Transcranial Direct Current Stimulation. NeuroImage 2014, 85, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, J.; Osher, S.; Liu, W. Graph Fractional-Order Total Variation EEG Source Reconstruction. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: Piscataway, NJ, USA; pp. 101–104. [Google Scholar]
- Li, Y.; Qin, J.; Hsin, Y.-L.; Osher, S.; Liu, W. S-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography. Front. Neurosci. 2016, 10, 543. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Corazza, M.; Turovets, S.; Luu, P.; Anderson, E.; Tucker, D. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle. Front. Psychiatry 2016, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Guler, S.; Dannhauer, M.; Erem, B.; Macleod, R.; Tucker, D.; Turovets, S.; Luu, P.; Erdogmus, D.; Brooks, D.H. Optimization of Focality and Direction in Dense Electrode Array Transcranial Direct Current Stimulation (TDCS). J. Neural Eng. 2016, 13, 036020. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, H.; Li, Y.; Liu, W. Impact of Electrode Number on the Performance of High-Definition Transcranial Direct Current Stimulation (HD-TDCS). In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; IEEE: Piscataway, NJ, USA; pp. 4182–4185.
- Qin, J.; Wu, T.; Li, Y.; Yin, W.; Osher, S.; Liu, W. Accelerated High-Resolution EEG Source Imaging. In Proceedings of the 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 25–28 May 2017. [Google Scholar]
- Dmochowski, J.P.; Datta, A.; Bikson, M.; Su, Y.; Parra, L.C. Optimized Multi-Electrode Stimulation Increases Focality and Intensity at Target. J. Neural Eng. 2011, 8, 046011. [Google Scholar] [CrossRef]
- Ruffini, G.; Fox, M.D.; Ripolles, O.; Miranda, P.C.; Pascual-Leone, A. Optimization of Multifocal Transcranial Current Stimulation for Weighted Cortical Pattern Targeting from Realistic Modeling of Electric Fields. NeuroImage 2014, 89, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Wang, Y.; Liu, W. Current Design with Minimum Error in Transcranial Direct Current Stimulation. In Proceedings of the Brain Informatics; Wang, S., Yamamoto, V., Su, J., Yang, Y., Jones, E., Iasemidis, L., Mitchell, T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 52–62. [Google Scholar]
- Dmochowski, J.P.; Bikson, M.; Datta, A.; Richardson, J.; Fridriksson, J.; Parra, L.C. On the Role of Electric Field Orientation in Optimal Design of Transcranial Current Stimulation. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA; pp. 6426–6429. [Google Scholar]
- Sadleir, R.J.; Vannorsdall, T.D.; Schretlen, D.J.; Gordon, B. Target Optimization in Transcranial Direct Current Stimulation. Front. Psychiatry 2012, 3, 90. [Google Scholar] [CrossRef] [Green Version]
- Saturnino, G.B.; Siebner, H.R.; Thielscher, A.; Madsen, K.H. Accessibility of Cortical Regions to Focal TES: Dependence on Spatial Position, Safety, and Practical Constraints. NeuroImage 2019, 203, 116183. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef] [PubMed]
- Kühn, S.; Gallinat, J. A Quantitative Meta-Analysis on Cue-Induced Male Sexual Arousal. J. Sex. Med. 2011, 8, 2269–2275. [Google Scholar] [CrossRef] [PubMed]
- Stoléru, S.; Fonteille, V.; Cornélis, C.; Joyal, C.; Moulier, V. Functional Neuroimaging Studies of Sexual Arousal and Orgasm in Healthy Men and Women: A Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2012, 36, 1481–1509. [Google Scholar] [CrossRef]
- Zhao, L.; Guan, M.; Zhu, X.; Karama, S.; Khundrakpam, B.; Wang, M.; Dong, M.; Qin, W.; Tian, J.; Evans, A.C.; et al. Aberrant Topological Patterns of Structural Cortical Networks in Psychogenic Erectile Dysfunction. Front. Hum. Neurosci. 2015, 9, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mencarelli, L.; Menardi, A.; Neri, F.; Monti, L.; Ruffini, G.; Salvador, R.; Pascual-Leone, A.; Momi, D.; Sprugnoli, G.; Rossi, A.; et al. Impact of Network-targeted Multichannel Transcranial Direct Current Stimulation on Intrinsic and Network-to-network Functional Connectivity. J. Neurosci. Res. 2020, 98, 1843–1856. [Google Scholar] [CrossRef] [PubMed]
- Dmochowski, J.P.; Koessler, L.; Norcia, A.M.; Bikson, M.; Parra, L.C. Optimal Use of EEG Recordings to Target Active Brain Areas with Transcranial Electrical Stimulation. NeuroImage 2017, 157, 69–80. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiang, Z.; Ping, A.; Zhang, F.; Zhu, J.; Wang, Y.; Zhu, W.; Xu, K. Acute Seizure Control Efficacy of Multi-Site Closed-Loop Stimulation in a Temporal Lobe Seizure Model. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 419–428. [Google Scholar] [CrossRef]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Bikson, M. Extending the Parameter Range for TDCS: Safety and Tolerability of 4 MA Stimulation. Brain Stimul. 2017, 10, 541–542. [Google Scholar] [CrossRef]
- Khadka, N.; Borges, H.; Paneri, B.; Kaufman, T.; Nassis, E.; Zannou, A.L.; Shin, Y.; Choi, H.; Kim, S.; Lee, K.; et al. Adaptive Current TDCS up to 4 MA. Brain Stimul. 2020, 13, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Neural Signal Processing: Electrode-Based Brain Imaging, Focalized Neural Stimulation, and Neural Dynamics Study; University of California, Los Angeles: Los Angeles, CA, USA, 2017; ISBN 1-369-53567-8. [Google Scholar]
- Schmidt, C.; Wagner, S.; Burger, M.; van Rienen, U.; Wolters, C.H. Impact of Uncertain Head Tissue Conductivity in the Optimization of Transcranial Direct Current Stimulation for an Auditory Target. J. Neural Eng. 2015, 12, 046028. [Google Scholar] [CrossRef] [PubMed]
- Saturnino, G.B.; Thielscher, A.; Madsen, K.H.; Knösche, T.R.; Weise, K. A Principled Approach to Conductivity Uncertainty Analysis in Electric Field Calculations. NeuroImage 2019, 188, 821–834. [Google Scholar] [CrossRef] [PubMed]
- McCann, H.; Pisano, G.; Beltrachini, L. Variation in Reported Human Head Tissue Electrical Conductivity Values. Brain Topogr. 2019, 32, 825–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, D.; Cortes, M.; Datta, A.; Minhas, P.; Wassermann, E.M.; Bikson, M. Physiological and Modeling Evidence for Focal Transcranial Electrical Brain Stimulation in Humans: A Basis for High-Definition TDCS. NeuroImage 2013, 74, 266–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaeilpour, Z.; Milosevic, M.; Azevedo, K.; Khadka, N.; Navarro, J.; Brunoni, A.; Popovic, M.R.; Bikson, M.; Fonoff, E.T. Proceedings #21. Intracranial Voltage Recording during Transcranial Direct Current Stimulation (TDCS) in Human Subjects with Validation of a Standard Model. Brain Stimul. 2017, 10, e72–e75. [Google Scholar] [CrossRef]
- Colson, B.; Marcotte, P.; Savard, G. An Overview of Bilevel Optimization. Ann. Oper. Res. 2007, 153, 235–256. [Google Scholar] [CrossRef]
- Kunisch, K.; Pock, T. A Bilevel Optimization Approach for Parameter Learning in Variational Models. SIAM J. Imaging Sci. 2013, 6, 938–983. [Google Scholar] [CrossRef] [Green Version]
- Marbach, R.; Heise, H.M. Calibration Modeling by Partial Least-Squares and Principal Component Regression and Its Optimization Using an Improved Leverage Correction for Prediction Testing. Chemom. Intell. Lab. Syst. 1990, 9, 45–63. [Google Scholar] [CrossRef]
- Nguyen, N.; Milanfar, P.; Golub, G. Efficient Generalized Cross-Validation with Applications to Parametric Image Restoration and Resolution Enhancement. IEEE Trans. Image Process. 2001, 10, 1299–1308. [Google Scholar] [CrossRef]
- Hoekema, R.; Wieneke, G.H.; Leijten, F.S.S.; Ansems, J.; van Huffelen, A.C. Measurement of the Conductivity of Skull, Temporarily Removed During Epilepsy Surgery. Brain Topogr. 2003, 16, 29–38. [Google Scholar] [CrossRef]
- Wendel, K.; Väisänen, J.; Seemann, G.; Hyttinen, J.; Malmivuo, J. The Influence of Age and Skull Conductivity on Surface and Subdermal Bipolar EEG Leads. Comput. Intell. Neurosci. 2010, 2010, 397272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonakakis, M.; Schrader, S.; Aydin, Ü.; Khan, A.; Gross, J.; Zervakis, M.; Rampp, S.; Wolters, C.H. Inter-Subject Variability of Skull Conductivity and Thickness in Calibrated Realistic Head Models. NeuroImage 2020, 223, 117353. [Google Scholar] [CrossRef] [PubMed]
- Bullard, D.E.; Makachinas, T.T. Measurement of Tissue Impedence in Conjunction with Computed Tomography-Guided Stereotaxic Biopsies. J. Neurol. Neurosurg. Psychiatry 1987, 50, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Vatta, F.; Bruno, P.; Inchingolo, P. Improving Lesion Conductivity Estimate by Means of EEG Source Localization Sensitivity to Model Parameter. J. Clin. Neurophysiol. 2002, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, G.; Song, J.; Dai, M.; Xu, C.; Dong, X.; Fu, F. Ex-Vivo Characterization of Bioimpedance Spectroscopy of Normal, Ischemic and Hemorrhagic Rabbit Brain Tissue at Frequencies from 10 Hz to 1 MHz. Sensors 2016, 16, 1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tissue | Conventional | LCMV | SBFI | MI | CLS |
---|---|---|---|---|---|
Scalp | 0.003 | 0.008 | |||
Skull | 0.007 | 0.002 | 0.002 | 0.023 | |
CSF | 0.002 | ||||
Cortex | 0.003 | 0.009 |
Tissue | ||||
---|---|---|---|---|
Scalp | 0.2–0.6 | 0.598 | 0.242 | 0.890 |
Skull | 0.001–0.04 | 0.828 | 0.037 | 20.299 |
CSF | 1.20–2.01 | 0.386 | 0.257 | 0.159 |
Cortex | 0.05–0.71 | 0.352 | 0.219 | 0.202 |
Tissue | Max TE (mm) | Min TE (mm) | ||
---|---|---|---|---|
Scalp | 0.2–0.6 | 7.383 | 7.184 | 0.497 |
Skull | 0.001–0.04 | 8.158 | 6.605 | 39.830 |
CSF | 1.20–2.01 | 7.591 | 6.817 | 0.956 |
Cortex | 0.05–0.71 | 9.743 | 5.900 | 5.822 |
Tissue | Max Focality (mm) | Min Focality (mm) | ||
---|---|---|---|---|
Scalp | 0.2–0.6 | 22.808 | 22.007 | 2.002 |
Skull | 0.001–0.04 | 62.773 | 21.635 | 1054.8 |
CSF | 1.20–2.01 | 22.598 | 22.102 | 0.612 |
Cortex | 0.05–0.71 | 33.227 | 21.522 | 17.736 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Brand, J.; Liu, W. Stimulation Montage Achieves Balanced Focality and Intensity. Algorithms 2022, 15, 169. https://doi.org/10.3390/a15050169
Wang Y, Brand J, Liu W. Stimulation Montage Achieves Balanced Focality and Intensity. Algorithms. 2022; 15(5):169. https://doi.org/10.3390/a15050169
Chicago/Turabian StyleWang, Yushan, Jonathan Brand, and Wentai Liu. 2022. "Stimulation Montage Achieves Balanced Focality and Intensity" Algorithms 15, no. 5: 169. https://doi.org/10.3390/a15050169
APA StyleWang, Y., Brand, J., & Liu, W. (2022). Stimulation Montage Achieves Balanced Focality and Intensity. Algorithms, 15(5), 169. https://doi.org/10.3390/a15050169