Transcriptome Analysis in Male Strobilus Induction by Gibberellin Treatment in Cryptomeria japonica D. Don
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and GA Treatment
2.2. Extraction of Total RNA
2.3. Microarray
2.4. Analyses of Gene Expression Patterns and Identification of Differentially Expressed Genes
2.5. Gene Ontology (GO) Analysis
2.6. Real-Time PCR
3. Results
3.1. DEG Enrichment in Response to GA3 Treatment
3.2. Functional Analysis of DEGs
3.3. Expression Patterns of GA Signaling Pathway Genes
3.4. Expression Patterns of Genes Encoding Components of Other Plant Hormone Signaling Pathways
3.5. Expression Patterns of MADS-Box Genes
3.6. Validation Using Real-Time PCR
4. Discussion
4.1. Comprehensive Gene Expression Dynamics Following GA3 Treatment
4.2. The Expression of GA Signal Transduction-Related Genes
4.3. Expression of Male Strobilus Formation-Related Genes and the Growth Phase Transition from Vegetative to Reproductive Phase by GA Treatment
4.4. Crosstalk with Auxin Signal Transduction During Male Strobilus Formation
4.5. Growth Control by GA Treatment
4.6. Senescence-Like Gene Expression Patterns Following GA Treatment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richards, D.E.; King, K.E.; Ait-Ali, T.; Harberd, N.P. How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 67–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.-P.; Gubler, F. Molecular Mechanism of Gibberellin Signaling in Plants. Annu. Rev. Plant Boil. 2004, 55, 197–223. [Google Scholar] [CrossRef] [Green Version]
- Hirano, K.; Nakajima, M.; Asano, K.; Nishiyama, T.; Sakakibara, H.; Kojima, M.; Katoh, E.; Xiang, H.; Tanahashi, T.; Hasebe, M.; et al. The GID1-Mediated Gibberellin Perception Mechanism Is Conserved in the Lycophyte Selaginella moellendorffii but Not in the Bryophyte Physcomitrella patens. Plant Cell 2007, 19, 3058–3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenbussche, F.; Fierro, A.C.; Wiedemann, G.; Reski, R.; Van Der Straeten, D. Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Boil. 2007, 7, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, K.-I.; Horie, K.; Hiwatashi, Y.; Kawaide, H.; Yamaguchi, S.; Hanada, A.; Nakashima, T.; Nakajima, M.; Mander, L.N.; Yamane, H.; et al. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol. 2010, 153, 1085–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, K.; Ueguchi-Tanaka, M.; Matsuoka, M. GID1-mediated gibberellin signaling in plants. Trends Plant Sci. 2008, 13, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Aya, K.; Hiwatashi, Y.; Kojima, M.; Sakakibara, H.; Ueguchi-Tanaka, M.; Hasebe, M.; Matsuoka, M. The Gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution. Nat. Commun. 2011, 2, 544. [Google Scholar] [CrossRef]
- Tanaka, J.; Yano, K.; Aya, K.; Hirano, K.; Takehara, S.; Koketsu, E.; Ordonio, R.L.; Park, S.-H.; Nakajima, M.; Ueguchi-Tanaka, M.; et al. Antheridiogen determines sex in ferns via a spatiotemporally split gibberellin synthesis pathway. Science 2014, 346, 469–473. [Google Scholar] [CrossRef]
- Conti, L. Hormonal control of the floral transition: Can one catch them all? Dev. Boil. 2017, 430, 288–301. [Google Scholar] [CrossRef]
- Mouradov, A.; Cremer, F.; Coupland, G. Control of flowering time: Interacting pathways as a basis for diversity. Plant Cell 2002, 14. [Google Scholar] [CrossRef] [Green Version]
- Simpson, G.G.; Dean, C. Arabidopsis, the Rosetta Stone of Flowering Time? Science 2002, 296, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrés, F.; Coupland, G.; Andr, F. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Bäurle, I.; Dean, C. The Timing of Developmental Transitions in Plants. Cell 2006, 125, 655–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikanth, A.; Schmid, M. Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 2011, 68, 2013–2037. [Google Scholar] [CrossRef] [PubMed]
- Mutasa-Gottgens, E.; Hedden, P. Gibberellin as a factor in floral regulatory networks. J. Exp. Bot. 2009, 60, 1979–1989. [Google Scholar] [CrossRef] [Green Version]
- Huijser, P.; Schmid, M. The control of developmental phase transitions in plants. Development 2011, 138, 4117–4129. [Google Scholar] [CrossRef] [Green Version]
- Okamuro, J.K.; Boer, B.G.W.D.; Lotys-Prass, C.; Szeto, W.; Jofuku, K.D. Flowers into shoots: Photo and hormonal control of a meristem identity switch in Arabidopsis. Proc. Natl. Acad. Sci. USA 1996, 93, 13831–13836. [Google Scholar] [CrossRef] [Green Version]
- Gocal, G.F.W.; Sheldon, C.C.; Gubler, F.; Moritz, T.; Bagnall, D.J.; MacMillan, C.P.; Li, S.F.; Parish, R.W.; Dennis, E.S.; Weigel, D.; et al. GAMYB-like Genes, Flowering, and Gibberellin Signaling in Arabidopsis. Plant Physiol. 2001, 127, 1682–1693. [Google Scholar] [CrossRef]
- Wilson, R.N.; Heckman, J.W.; Somerville, C.R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992, 100, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.; Suh, S.-S.; Lee, H.; Choi, K.-R.; Hong, C.B.; Paek, N.-C.; Kim, S.-G.; Lee, I. TheSOC1MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 2003, 35, 613–623. [Google Scholar] [CrossRef]
- Eriksson, S.; Böhlenius, H.; Moritz, T.; Nilsson, O. GA4 Is the Active Gibberellin in the Regulation of LEAFY Transcription and Arabidopsis Floral Initiation. Plant Cell 2006, 18, 2172–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blazquez, M.; Green, R.; Nilsson, O.; Sussman, M.; Weigel, D. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 1998, 10, 791–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, N.; Winter, C.M.; Wu, M.-F.; Kanno, Y.; Seo, M.; Wagner, D.; Yamaguchi, A. Gibberellin Acts Positively Then Negatively to Control Onset of Flower Formation in Arabidopsis. Science 2014, 344, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Fernández, H.; Fraga, M.; Bernard, P.; Revilla-Bahillo, M.A.M. Quantification of GA1, GA3, GA4, GA7, GA9, and GA20 in vegetative and male cone buds from juvenile and mature trees of Pinus radiata. Plant Growth Regul. 2003, 40, 185–188. [Google Scholar] [CrossRef]
- Niu, S.; Yuan, L.; Zhang, Y.; Chen, X.; Li, W. Isolation and expression profiles of gibberellin metabolism genes in developing male and female cones of Pinus tabuliformis. Funct. Integr. Genom. 2014, 14, 697–705. [Google Scholar] [CrossRef]
- Duan, D.; Jia, Y.; Yang, J.; Li, Z.-H. Comparative Transcriptome Analysis of Male and Female Conelets and Development of Microsatellite Markers in Pinus bungeana, an Endemic Conifer in China. Genes 2017, 8, 393. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Von Aderkas, P.; Zaharia, L.I. Effects of Exogenously Applied Gibberellins and Thidiazuron on Phytohormone Profiles of Long-Shoot Buds and Cone Gender Determination in Lodgepole Pine. J. Plant Growth Regul. 2015, 35, 172–182. [Google Scholar] [CrossRef]
- Crain, B.A.; Cregg, B.M. Regulation and Management of Cone Induction in Temperate Conifers. For. Sci. 2017, 64, 82–101. [Google Scholar] [CrossRef]
- Williams, C.G. Conifer Reproductive Biology; Springer: Berlin, Germany, 2009; p. 169. [Google Scholar]
- Hashizume, H. The effect of gibberellin upon flower formation in Cryptomeria japonica. J. Jpn. For. Soc. 1959, 41, 375–381, (In Japanese with English summary). [Google Scholar]
- Hashizume, H. Studies on flower bud formation, flower sex differentiation and their control in conifers. Bull. Tottori Univ. For. 1973, 7, 1–139, (In Japanese with English summary). [Google Scholar]
- Mishima, K.; Hirao, T.; Tsubomura, M.; Tamura, M.; Kurita, M.; Nose, M.; Hanaoka, S.; Takahashi, M.; Watanabe, A. Identification of novel putative causative genes and genetic marker for male sterility in Japanese cedar (Cryptomeria japonica D.Don). BMC Genom. 2018, 19, 277. [Google Scholar] [CrossRef] [PubMed]
- Mishima, K.; Fujiwara, T.; Iki, T.; Kuroda, K.; Yamashita, K.; Tamura, M.; Fujisawa, Y.; Watanabe, A. Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genom. 2014, 15, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nose, M.; Watanabe, A. Clock genes and diurnal transcriptome dynamics in summer and winter in the gymnosperm Japanese cedar (Cryptomeria japonica (L.f.) D.Don). BMC Plant Boil. 2014, 14, 308. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, Y.; Hirao, T.; Mishima, K.; Ohira, M.; Hiraoka, Y.; Takahashi, M.; Watanabe, A. Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. Don. BMC Plant Boil. 2018, 18, 201. [Google Scholar] [CrossRef] [PubMed]
- Fukui, K.; Wakamatsu, T.; Agari, Y.; Masui, R.; Kuramitsu, S. Inactivation of the DNA Repair Genes mutS, mutL or the Anti-Recombination Gene mutS2 Leads to Activation of Vitamin B1 Biosynthesis Genes. PLoS ONE 2011, 6, e19053. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Kir, J.; Liu, D.; Bryant, D.; Guo, Y.; Stephens, R.; Baseler, M.W.; Lane, H.C.; et al. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007, 35, W169–W175. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.; Tan, Q.; Collins, J.R.; Alvord, W.G.; Roayaei, J.; Stephens, R.M.; Baseler, M.; Lane, H.C.; Lempicki, R. The DAVID Gene Functional Classification Tool: A Novel Biological Module-Centric Algorithm to Functionally Analyze Large Gene Lists. Genome Boil. 2007, 8, R183. [Google Scholar] [CrossRef] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, 45. [Google Scholar] [CrossRef]
- Gomi, K.; Sasaki, A.; Itoh, H.; Ashikari, M.; Kitano, H.; Matsuoka, M.; Ueguchi-Tanaka, M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J. 2004, 37, 626–634. [Google Scholar] [CrossRef]
- Krizek, B.A.; Fletcher, J.C. Molecular mechanisms of flower development: An armchair guide. Nat. Rev. Genet. 2005, 6, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Theißen, G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 2003, 29, 464–489. [Google Scholar] [CrossRef]
- Ueguchi-Tanaka, M.; Ashikari, M.; Nakajima, M.; Itoh, H.; Katoh, E.; Kobayashi, M.; Chow, T.-Y.; Hsing, Y.-I.C.; Kitano, H.; Yamaguchi, I.; et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 2005, 437, 693–698. [Google Scholar] [CrossRef]
- Nakajima, M.; Shimada, A.; Takashi, Y.; Kim, Y.-C.; Park, S.-H.; Ueguchi-Tanaka, M.; Suzuki, H.; Katoh, E.; Iuchi, S.; Kobayashi, M.; et al. Identification and characterization of Arabidopsis gibberellin receptors. Plant J. 2006, 46, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Ueguchi-Tanaka, M.; Nakajima, M.; Katoh, E.; Ohmiya, H.; Asano, K.; Saji, S.; Hongyu, X.; Ashikari, M.; Kitano, H.; Yamaguchi, I.; et al. Molecular Interactions of a Soluble Gibberellin Receptor, GID1, with a Rice DELLA Protein, SLR1, and Gibberellin. Plant Cell 2007, 19, 2140–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukazawa, J.; Teramura, H.; Murakoshi, S.; Nasuno, K.; Nishida, N.; Ito, T.; Yoshida, M.; Kamiya, Y.; Yamaguchi, S.; Takahashi, Y. DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. Plant Cell 2014, 26, 2920–2938. [Google Scholar] [CrossRef] [Green Version]
- Cao, N.; Cheng, H.; Wu, W.; Soo, H.M.; Peng, J. Gibberellin Mobilizes Distinct DELLA-Dependent Transcriptomes to Regulate Seed Germination and Floral Development in Arabidopsis. Plant Physiol. 2006, 142, 509–525. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Hu, W.-W.; Shen, L.; Lee, L.Y.C.; Tao, Z.; Han, J.-H.; Yu, H. Global Identification of DELLA Target Genes during Arabidopsis Flower Development. Plant Physiol. 2008, 147, 1126–1142. [Google Scholar] [CrossRef] [Green Version]
- Zentella, R.; Zhang, Z.-L.; Park, M.; Thomas, S.G.; Endo, A.; Murase, K.; Fleet, C.M.; Jikumaru, Y.; Nambara, E.; Kamiya, Y.; et al. Global Analysis of DELLA Direct Targets in Early Gibberellin Signaling in Arabidopsis. Plant Cell 2007, 19, 3037–3057. [Google Scholar] [CrossRef]
- Sun, T.-P. Gibberellin-GID1-DELLA: A Pivotal Regulatory Module for Plant Growth and Development. Plant Physiol. 2010, 154, 567–570. [Google Scholar] [CrossRef]
- Jung, C.J.; Hur, Y.Y.; Yu, H.-J.; Noh, J.-H.; Park, K.-S.; Lee, H.J. Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development. PLoS ONE 2014, 9, e95634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, W.-K.; Wang, Y.; Chen, X.-Y.; Zayed, M.; Wu, G. Analysis of Transcriptional Responses of the Inflorescence Meristems in Jatropha curcas Following Gibberellin Treatment. Int. J. Mol. Sci. 2018, 19, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, U.; Hohmann, S.; Nettesheim, K.; Wisman, E.; Saedler, H.; Huijser, P. Molecular cloning of SVP: A negative regulator of the floral transition in Arabidopsis. Plant J. 2000, 21, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Wellmer, F.; Alves-Ferreira, M.; Dubois, A.; Riechmann, J.L.; Meyerowitz, E.M. Genome-Wide Analysis of Gene Expression during Early Arabidopsis Flower Development. PLoS Genet. 2006, 2, e117. [Google Scholar] [CrossRef] [Green Version]
- Ferrándiz, C.; Gu, Q.; Martienssen, R.; Yanofsky, M.F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 2000, 127, 725–734. [Google Scholar]
- Tsubomura, M.; Kurita, M.; Watanabe, A. Determination of male strobilus developmental stages by cytological and gene expression analyses in Japanese cedar (Cryptomeria japonica). Tree Physiol. 2016, 36, 653–666. [Google Scholar] [CrossRef] [Green Version]
- Hartweck, L.M. Gibberellin signaling. Planta 2008, 229, 1–13. [Google Scholar] [CrossRef]
- Weiss, D.; Ori, N. Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiol. 2007, 144, 1240–1246. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.P. The molecular mechanism and evolution of the review GA–GID1–DELLA signaling module in plants. Curr. Biol. 2011, 21, R338–R345. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, N.; Wu, M.-F.; Winter, C.M.; Berns, M.C.; Nole-Wilson, S.; Yamaguchi, A.; Coupland, G.; Krizek, B.A.; Wagner, D. A Molecular Framework for Auxin-Mediated Initiation of Flower Primordia. Dev. Cell 2013, 24, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, N.; Jeong, C.W.; Nole-Wilson, S.; Krizek, B.A.; Wagner, D. AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis. Plant Physiol. 2016, 170, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Fukaki, H.; Taniguchi, N.; Tasaka, M. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant J. 2006, 48, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, H. Chemical regulation of flower-bud formation in conifers. J. Jpn. For. Soc. 1968, 50, 14–16. (In Japanese) [Google Scholar]
- Kohorn, B.D.; Johansen, S.; Shishido, A.; Todorova, T.; Martinez, R.; Defeo, E.; Obregon, P. Pectin activation of MAP kinase and gene expression is WAK2 dependent. Plant J. 2009, 60, 974–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, S.; Amasino, R.M. Making Sense of Senescence. Plant Physiol. 1997, 113, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubcovsky, J. A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Laun, T.; Zimmermann, P.; Zentgraf, U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol. Biol. 2004, 55, 853–867. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, Y.; Han, X.; Wang, H.; Pan, J.; Yu, D. Jasmonate regulates leaf senescence and tolerance to cold stress: Crosstalk with other phytohormones. J. Exp. Bot. 2017, 68, 1361–1369. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, C. Signal transduction in leaf senescence. Plant Mol. Boil. 2012, 82, 539–545. [Google Scholar] [CrossRef]
- Jibran, R.; Hunter, D.; Dijkwel, P. Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol. Boil. 2013, 82, 547–561. [Google Scholar] [CrossRef]
- Zhang, K.; Xia, X.; Zhang, Y.; Gan, S.-S. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J. 2011, 69, 667–678. [Google Scholar] [CrossRef] [PubMed]
SEQ_ID | Short SEQ_ID | Arabi_ID | Symbol | Description | E-Value |
---|---|---|---|---|---|
reCj11694:-S--:isotig11549 | reCj11694 | AT3G03450 | RGL2 | RGA-like_2 | 7.86E−56 |
reCj34040:----:isotig33892 | reCj34040 | AT4G24210 | SLY1 | F-box_family_protein | 6.88E−24 |
reCj28549:-SWR:isotig28401 | reCj28549 | AT4G24210 | SLY1 | F-box_family_protein | 1.02E−24 |
reCj31635:----:isotig31487 | reCj31635 | AT2G21220 | SAUR12 | SAUR-like_auxin-responsive_protein_family | 7.47E−30 |
reCj30256:-S--:isotig30108 | reCj30256 | AT5G20810 | SAUR70 | SAUR-like_auxin-responsive_protein_family | 6.82E−26 |
reCj27704:-SWR:isotig27556 | reCj27704 | AT4G14550 | IAA14 | SLR_indole − 3-acetic_acid_inducible_14 | 9.46E−76 |
reCj19503:M--R:isotig19355 | reCj19503 | AT1G28130 | GH3.17 | Auxin-responsive_GH3_family_protein | 0 |
reCj19606:M--R:isotig19458 | reCj19606 | AT5G54510 | GH3.6 | Auxin-responsive_GH3_family_protein | 0 |
reCj27651:--WR:isotig27503 | reCj27651 | AT3G57040 | ARR9 | ATRR4_response_regulator_9 | 9.29E−39 |
reCj26644:--W-:isotig26496 | reCj26644 | AT2G29380 | HAI3 | highly_ABA-induced_PP2C_gene_3 | 1.19E−74 |
reCj25311:--WR:isotig25163 | reCj25311 | AT2G29380 | HAI3 | highly_ABA-induced_PP2C_gene_3 | 2.06E−94 |
reCj12520:MS-R:isotig12375 | reCj12520 | AT5G20900 | JAZ12 | jasmonate-zim-domain_protein_12 | 2.83E−16 |
reCj27869:-SWR:isotig27721 | reCj27869 | AT1G19180 | JAZ1 | jasmonate-zim-domain_protein_1 | 1.48E−15 |
reCj27238:-SWR:isotig27090 | reCj27238 | AT1G70700 | JAZ9 | TIFY_domain/Divergent_CCT_motif_family_protein | 3.15E−17 |
reCj23299:MSWR:isotig23151 | reCj23299 | AT3G50070 | CYCD3 | CYCLIN_D3;3 | 2.35E−62 |
reCj28941:----:isotig28793 | reCj28941 | AT5G67260 | CYCD3 | CYCLIN_D3;2 | 9.03E−40 |
reCj32790:----:isotig32642 | reCj32790 | AT4G33720 | PR1 | CAP_(Cysteine-rich_secretory_proteins,_Antigen_5,_and_Pathogenesis-related_1_protein)_superfamily_protein | 8.24E−62 |
reCj20357:--W-:isotig20209 | reCj20357 | AT2G41370 | BOP2 | Ankyrin_repeat_family_protein_/_BTB/POZ_domain-containing_protein | 1.11E−158 |
reCj31882:-S--:isotig31734 | reCj31882 | AT4G33720 | PR1 | CAP_(Cysteine-rich_secretory_proteins,_Antigen_5,_and_Pathogenesis-related_1_protein)_superfamily_protein | 9.89E−63 |
reCj31173:---R:isotig31025 | reCj31173 | AT4G33720 | PR1 | CAP_(Cysteine-rich_secretory_proteins,_Antigen_5,_and_Pathogenesis-related_1_protein)_superfamily_protein | 5.87E−62 |
SEQ_ID | Short SEQ_ID | Arabi_ID | Symbol | Description | E-Value |
---|---|---|---|---|---|
reCj29105:-S--:isotig28957 | reCj29105 | AT5G15800 | SEP1, AGL2 | K-box_region_and_MADS-box_transcription_factor_family_protein | 5.59E−30 |
reCj27161:MS--:isotig27013 | reCj27161 | AT5G20240 | PI | K-box_region_and_MADS-box_transcription_factor_family_protein | 1.63E−48 |
reCj32389:M---:isotig32241 | reCj32389 | AT3G57230 | AGL16 | AGAMOUS-like_16 | 4.66E−24 |
reCj31097:M---:isotig30949 | reCj31097 | AT2G45650 | AGL6 | AGAMOUS-like_6 | 8.94E−33 |
reCj28306:M---:isotig28158 | reCj28306 | AT1G24260 | SEP3, AGL9 | K-box_region_and_MADS-box_transcription_factor_family_protein | 4.47E−54 |
reCj31827:M---:isotig31679 | reCj31827 | AT5G20240 | PI | K-box_region_and_MADS-box_transcription_factor_family_protein | 2.06E−33 |
reCj29951:M---:isotig29803 | reCj29951 | AT5G20240 | PI | K-box_region_and_MADS-box_transcription_factor_family_protein | 1.35E−31 |
reCj33073:M---:isotig32925 | reCj33073 | AT2G45650 | AGL6 | AGAMOUS-like_6 | 1.51E−21 |
reCj30226:M---:isotig30078 | reCj30226 | AT2G45650 | AGL6 | AGAMOUS-like_6 | 5.87E−33 |
reCj30596:M---:isotig30448 | reCj30596 | AT5G20240 | PI | K-box_region_and_MADS-box_transcription_factor_family_protein | 2.00E−36 |
reCj17268:----:isotig17123 | reCj17268 | AT5G13790 | AGL15 | AGAMOUS-like_15 | 3.50E−18 |
reCj25811:MS--:isotig25663 | reCj25811 | AT3G58780 | SHP1 | K-box_region_and_MADS-box_transcription_factor_family_protein | 4.57E−47 |
reCj27510:-SW-:isotig27362 | reCj27510 | AT2G22540 | AGL22 | K-box_region_and_MADS-box_transcription_factor_family_protein | 2.05E−40 |
reCj15424:-SW-:isotig15279 | reCj15424 | AT5G60910 | AGL8 | AGAMOUS-like_8 | 7.64E−34 |
reCj29820:--W-:isotig29672 | reCj29820 | AT2G45660 | AGL20 | AGAMOUS-like_20 | 1.88E−39 |
reCj30835:----:isotig30687 | reCj30835 | AT4G22950 | AGL19 | AGAMOUS-like_19 | 9.09E−25 |
reCj15467:----:isotig15322 | reCj15467 | AT5G60910 | AGL8 | AGAMOUS-like_8 | 4.67E−34 |
reCj29690:-SW-:isotig29542 | reCj29690 | AT5G60910 | AGL8 | AGAMOUS-like_8 | 4.52E−37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurita, M.; Mishima, K.; Tsubomura, M.; Takashima, Y.; Nose, M.; Hirao, T.; Takahashi, M. Transcriptome Analysis in Male Strobilus Induction by Gibberellin Treatment in Cryptomeria japonica D. Don. Forests 2020, 11, 633. https://doi.org/10.3390/f11060633
Kurita M, Mishima K, Tsubomura M, Takashima Y, Nose M, Hirao T, Takahashi M. Transcriptome Analysis in Male Strobilus Induction by Gibberellin Treatment in Cryptomeria japonica D. Don. Forests. 2020; 11(6):633. https://doi.org/10.3390/f11060633
Chicago/Turabian StyleKurita, Manabu, Kentaro Mishima, Miyoko Tsubomura, Yuya Takashima, Mine Nose, Tomonori Hirao, and Makoto Takahashi. 2020. "Transcriptome Analysis in Male Strobilus Induction by Gibberellin Treatment in Cryptomeria japonica D. Don" Forests 11, no. 6: 633. https://doi.org/10.3390/f11060633
APA StyleKurita, M., Mishima, K., Tsubomura, M., Takashima, Y., Nose, M., Hirao, T., & Takahashi, M. (2020). Transcriptome Analysis in Male Strobilus Induction by Gibberellin Treatment in Cryptomeria japonica D. Don. Forests, 11(6), 633. https://doi.org/10.3390/f11060633