Effects of Pneumatophore Density on Methane Emissions in Mangroves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Methane Emissions Measurements
2.3. Soil Sample Analyses
2.4. Statistical Analyses
3. Results
3.1. CH4 Emissions and Soil Properties
3.2. Effects of Soil Properties and Pneumatophores on Methane Emissions in Mangrove Ecosystems
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- O’Connor, J.J.; Fest, B.J.; Sievers, M.; Swearer, S.E. Impacts of land management practices on blue carbon stocks and greenhouse gas fluxes in coastal ecosystems—A meta-analysis. Glob. Chang. Biol. 2020, 26, 1354–1366. [Google Scholar] [CrossRef] [PubMed]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76. [Google Scholar] [CrossRef]
- Yulianto, G.; Soewardi, K.; Adrianto, L. The role of mangrove in support of coastal fisheries in Indramayu Regency, West Java, Indonesia. Aquac. Aquar. Conserv. Legis. Int. J. Bioflux Soc. 2016, 9, 1020–1029. [Google Scholar]
- Herrera-Silveira, J.A.; Pech-Cardenas, M.A.; Morales-Ojeda, S.M.; Cinco-Castro, S.; Camacho-Rico, A.; Sosa, J.P.C.; Mendoza-Martinez, J.E.; Pech-Poot, E.Y.; Montero, J.; Teutli-Hernandez, C. Blue carbon of Mexico, carbon stocks and fluxes: A systematic review. PeerJ 2020, 8, e8790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nellemann, C.; MacDevette, M.; Manders, T.; Eickhout, B.; Svihus, B.; Prins, A.G.; Kaltenborn, B.P. The Environmental Food Crisis: The Environment’s Role in Averting Future Food Crises; A UNEP Rapid Response Assessment Programme: GRID-Arendal: Arendal, Norway, 2009. [Google Scholar]
- Serrano, O.; Lovelock, C.E.; Atwood, T.B.; Macreadie, P.I.; Canto, R.; Phinn, S.; Arias-Ortiz, A.; Bai, L.; Baldock, J.; Bedulli, C.; et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 2019, 10, 4313. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Rosentreter, J.A.; Maher, D.T.; Erler, D.V.; Murray, R.H.; Eyre, B.D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 2018, 4, 4985. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.W.; Kao, Y.C.; Chou, M.C.; Wu, H.H.; Ho, C.W.; Lin, H.J. Methane Emissions from Subtropical and Tropical Mangrove Ecosystems in Taiwan. Forests 2020, 11, 470. [Google Scholar] [CrossRef] [Green Version]
- Nóbrega, G.N.; Ferreira, T.O.; Neto, M.S.; Queiroz, H.M.; Artur, A.G.; Mendonça, E.D.S.; Silva, E.D.O.; Otero, X.L. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO2 and CH4) from semiarid mangrove soils (NE-Brazil). Sci. Total Environ. 2016, 542, 685–693. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M.; Wattayakorn, G.; Pfitzner, J.; Tirendi, F.; Zagorskis, I.; Brunskill, G.J.; Clough, B.F. Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Mar. Geol. 2001, 179, 85–103. [Google Scholar] [CrossRef]
- Li, C.; Mosier, A.; Wassmann, R.; Cai, Z.; Zheng, X.; Huang, Y.; Tsuruta, H.; Boonjawat, J.; Lantin, R. Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Cameron, C.; Hutley, L.B.; Friess, D.A. Estimating the full greenhouse gas emissions offset potential and profile between rehabilitating and established mangroves. Sci. Total Environ. 2019, 665, 419–431. [Google Scholar] [CrossRef]
- Al-Haj, A.N.; Fulweiler, R.W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Chang. Biol. 2020, 26, 2988–3005. [Google Scholar] [CrossRef] [PubMed]
- Padhy, S.R.; Bhattacharyya, P.; Dash, P.K.; Reddy, C.S.; Chakraborty, A.; Pathak, H. Seasonal fluctuation in three mode of greenhouse gases emission in relation to soil labile carbon pools in degraded mangrove, Sundarban, India. Sci. Total Environ. 2020, 705, 135909. [Google Scholar] [CrossRef]
- Allen, D.E.; Dalal, R.C.; Rennenberg, H.; Meyer, R.L.; Reeves, S.; Schmidt, S. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biol. Biochem. 2007, 39, 622–631. [Google Scholar] [CrossRef]
- Allen, D.; Dalal, R.C.; Rennenberg, H.; Schmidt, S. Seasonal variation in nitrous oxide and methane emissions from subtropical estuary and coastal mangrove sediments, Australia. Plant Biol. 2011, 13, 126–133. [Google Scholar] [CrossRef]
- Chen, G.; Chen, B.; Yu, D.; Tam, N.F.; Ye, Y.; Chen, S. Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environ. Res. Lett. 2016, 11, 124019. [Google Scholar] [CrossRef]
- Hernández, M.E.; Junca-Gómez, D. Carbon stocks and greenhouse gas emissions (CH4 and N2O) in mangroves with different vegetation assemblies in the central coastal plain of Veracruz Mexico. Sci. Total Environ. 2020, 741, 140276. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Guan, W.; Xue, D.; Liu, L.; Peng, C.; Liao, B.; Hu, J.; Yang, Y.; Wang, X.; Zhou, G. Comparison of methane emissions among invasive and native mangrove species in Dongzhaigang, Hainan Island. Sci. Total Environ. 2019, 697, 133945. [Google Scholar] [CrossRef] [PubMed]
- Krithika, K.; Purvaja, R.; Ramesh, R. Fluxes of methane and nitrous oxide from an Indian mangrove. Curr. Sci. 2008, 94, 218–224. [Google Scholar]
- Livesley, S.J.; Andrusiak, S.M. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuar. Coast. Shelf Sci. 2012, 97, 19–27. [Google Scholar] [CrossRef]
- Central Weather Bureau of Taiwan. Available online: https://www.cwb.gov.tw/V8/C/ (accessed on 23 January 2021).
- OAKTON Instruments, IL, USA. Instruction Manual: pH Spear, Oakton 35634-40. Available online: http://www.4oakton.com/Assets/manual_pdfs/35634series.pdf (accessed on 25 February 2021).
- Li, S.B.; Chen, P.H.; Huang, J.S.; Hsueh, M.L.; Hsieh, L.Y.; Lee, C.L.; Lin, H.J. Factors regulating carbon sinks in mangrove ecosystems. Glob. Chang. Boil. 2018, 24, 4195–4210. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org (accessed on 11 February 2020).
- Chen, G.C.; Tam, N.F.Y.; Ye, Y. Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China. Sci. Total Environ. 2010, 408, 2761–2767. [Google Scholar] [CrossRef]
- Xiang, J.; Liu, D.; Ding, W.; Yuan, J.; Lin, Y. Invasion chronosequence of Spartina alterniflora on methane emission and organic carbon sequestration in a coastal salt marsh. Atmos. Environ. 2015, 112, 72–80. [Google Scholar] [CrossRef]
- Segarra, K.E.A.; Samarkin, V.; King, E.; Meile, C.; Joye, S.B. Seasonal variations of methane fluxes from an unvegetated tidal freshwater mudflat (Hammersmith Creek, GA). Biogeochemistry 2013, 115, 349–361. [Google Scholar] [CrossRef]
- Wang, H.; Liao, G.; D’Souza, M.; Yu, X.; Yang, J.; Yang, X.; Zheng, T. Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China. Environ. Sci. Pollut. Res. 2016, 23, 1873–1885. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Valach, A.; Shortt, R.; Kasak, K.; Rey-Sanchez, C.; Hemes, K.S.; Baldocchi, D.; Lai, D.Y. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half. Glob. Chang. Biol. 2020, 26, 4998–5016. [Google Scholar] [CrossRef] [PubMed]
- Purvaja, R.; Ramesh, R.; Frenzel, P. Plant-mediated methane emission from an Indian mangrove. Glob. Chang. Biol. 2004, 10, 1825–1834. [Google Scholar] [CrossRef]
- Chauhan, R.; Datta, A.; Ramanathan, A.L.; Adhya, T.K. Factors influencing spatio-temporal variation of methane and nitrous oxide emission from a tropical mangrove of eastern coast of India. Atmos. Environ. 2015, 107, 95–106. [Google Scholar] [CrossRef]
- Li, X.; Mitsch, W.J. Methane emissions from created and restored freshwater and brackish marshes in southwest Florida, USA. Ecol. Eng. 2016, 91, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Cotovicz, L.C., Jr.; Knoppers, B.A.; Brandini, N.; Poirier, D.; Santos, S.J.C.; Abril, G. Spatio-temporal variability of methane (CH4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil). Limnol. Oceanogr. 2016, 61, S238–S252. [Google Scholar] [CrossRef]
- Chang, T.C.; Yang, S.S. Methane emission from wetlands in Taiwan. Atmos. Environ. 2003, 37, 4551–4558. [Google Scholar] [CrossRef]
- Chen, G.C.; Tam, N.F.Y.; Wong, Y.S.; Ye, Y. Effect of wastewater discharge on greenhouse gas fluxes from mangrove soils. Atmos. Environ. 2011, 45, 1110–1115. [Google Scholar] [CrossRef]
- Gonsalves, M.J.; Fernandes, C.E.; Fernandes, S.O.; Kirchman, D.L.; Bharathi, P.L. Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea. Environ. Monit. Assess. 2011, 182, 385–395. [Google Scholar] [CrossRef]
- Konnerup, D.; Betancourt-Portela, J.M.; Villamil, C.; Parra, J.P. Nitrous oxide and methane emissions from the restored mangrove ecosystem of the Ciénaga Grande de Santa Marta, Colombia. Estuar. Coast. Shelf Sci. 2014, 140, 43–51. [Google Scholar] [CrossRef]
- Kreuzwieser, J.; Buchholz, J.; Rennenberg, H. Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biol. 2003, 5, 423–431. [Google Scholar] [CrossRef]
Site ID | A | B | C | D | E1 | E2 | F | G | H | |
---|---|---|---|---|---|---|---|---|---|---|
Site Name | WZ | ZW | XF | ZN | FY-K | FY-A | BD | BM | CK | |
Latitude and longitude | 25°10′ N, 121°25′ E | 25°08′ N, 121°27′ E | 24°54′ N, 120°58′ E | 24°40′ N, 120°50′ E | 23°55′ N, 120°18′ E | 23°21′ N, 120°7′ E | 23°17′ N, 120°6′ E | 23°07′ N, 120°05′ E | ||
Sampling time | 2019: all (November)2020: winter (February), spring (May), and summer (July) | 2019: spring (April), summer (July), and fall (October)2020: winter (February) | 2019: fall (November)2020: winter (February), spring (May), and summer (July) | 2019: spring (April), summer (July), and fall (October) 2020: winter (February) | 2020: winter (February), spring (May), summer (August), and fall (November) | |||||
Mean seasonal rainfall (mm) a | December–February (winter) | 105.7 | 52 | 29.7 | 47.2 | 4.2 | 3.5 | 37.7 | ||
March–May (spring) | 234 | 352 | 260.3 | 102 | 92.2 | 83.8 | 147.3 | |||
June–August (summer) | 158.3 | 232.5 | 267.5 | 112.5 | 369.7 | 419.7 | 260.3 | |||
September–November (fall) | 245.3 | 44.7 | 23 | 3 | 7.5 | 34.2 | 30 | |||
Mean seasonal temperature (°C) a | December–February (winter) | 17.4 | 16.9 | 17.6 | 18.2 | 19.4 | 19.5 | 18.7 | ||
March–May (spring) | 24.0 | 21.1 | 21.9 | 23.3 | 23.7 | 23.7 | 23.9 | |||
June–August (summer) | 29.5 | 27.8 | 28.7 | 30.4 | 28.6 | 28.4 | 29.1 | |||
September–November (fall) | 24.0 | 23.3 | 24.2 | 25 | 25.2 | 25.1 | 25.1 | |||
Mean tidal range (cm) a | 220 | 366 | 388 | 410 | 181 | 136 | 139 | |||
Mean immersion time at sampling sites during flood tides (hours/day) | 8.5 | 6.9 | 4.8 | 1.2 | 7.2 | 18.2 | 14.4 | 7.4 | ||
Major mangrove species | Kandelia obovata | Kandelia obovata | Kandelia obovata | Kandelia obovata | Avicennia marina | Avicennia marina | Avicennia marina | Avicennia marina | ||
Presence of pneumatophores | No | No | No | No | Yes | Yes | Yes | Yes | ||
Mangrove forest area (ha) | 15.8 | 47.1 | 9.37 | 19.59 | 4.9 | 68.7 | 30.2 | 5.48 | 5.2 | |
Mean tree height (m) | 4.0 | 3.4 | 5.1 | 5.0 | 4.3 | 1.8 | 4.0 | 3.2 | 4.0 | |
Mean tree density (trees m−2) | 1.3 | 2.3 | 2.4 | 1.9 | 2.2 | 1.0 | 0.9 | 0.6 | 0.3 | |
Mean diameter at breast height (DBH) (cm) | 7.0 | 4.7 | 5.6 | 5.9 | 8.1 | 10.5 | 5.4 | 6.2 | 20.1 | |
Soil texture | Silt | Silt | Silt | Silt | Silt | Silt | Silt | Silt | Silt | |
Median grain size (mm) | 0.054 ± 0.003 | 0.028 ± 0.003 | 0.058 ± 0.017 | 0.023 ± 0.004 | 0.015 ± 0.001 | 0.035 ± 0.005 | 0.033 ± 0.004 | 0.037 ± 0.008 | 0.025 ± 0.003 |
Mangrove Site | CH4 Emission | Temperature | ORP | pH | Salinity | Bulk Density | Water Content | Organic Matter |
---|---|---|---|---|---|---|---|---|
(µmol-CH4 m−2 h−1) | (°C) | (mV) | (psu) | (g cm−3) | (%) | (%) | ||
A | 2.4 ± 0.3 ab | 25.4 ± 1.2 | 10.7 ± 9.9 bc | 6.7 ± 0.1 d | 2.6 ± 0.2 ab | 1.1 ± 0.0 de | 32.4 ± 0.8 ab | 3.6 ± 0.1 a |
B | 1.3 ± 0.3 a | 26.2 ± 1.3 | −82.4 ± 14.6 ab | 6.6 ± 0.1 cd | 4.0 ± 0.1 c | 0.9 ± 0.0 bc | 42.8 ± 0.6 bcd | 5.4 ± 0.1 bcd |
C | 4.2 ± 1.0 ab | 23.0 ± 0.9 | 166.5 ± 13.1 d | 6.3 ± 0.0 ab | 1.1 ± 0.1 a | 1.0 ± 0.0 cd | 30.7 ± 0.6 a | 5.5 ± 0.2 bc |
D | 0.8 ± 0.2 a | 22.7 ± 1.0 | 109.3 ± 16.0 cd | 6.7 ± 0.1 d | 3.0 ± 0.1 bc | 1.2 ± 0.0 e | 28.0 ± 0.7 a | 4.1 ± 0.1 ab |
E1 | 1.2 ± 0.3 a | 24.9 ± 1.4 | 131.0 ± 8.0 cd | 6.7 ± 0.1 d | 4.5 ± 0.5 bc | 0.8 ± 0.0 ab | 43.5 ± 1.0 cd | 11.8 ± 0.5 de |
E2 | 14.2 ± 4.9 bc | 24.9 ± 1.1 | −48.5 ± 16.3 b | 6.9 ± 0.1 d | 3.1 ± 0.2 bc | 1.2 ± 0.0 de | 27.3 ± 0.8 a | 3.2 ± 0.1 a |
F | 29.6 ± 5.7 c | 26.0 ± 0.7 | −283.1 ± 13.1 a | 6.6 ± 0.0 abc | 4.6 ± 0.4 c | 0.6 ± 0.0 ab | 53.1 ± 1.8 d | 7.3 ± 0.3 cde |
G | 63.5 ± 26.0 c | 25.5 ± 0.8 | −74.7 ± 25.2 b | 6.7 ± 0.1 d | 4.3 ± 0.3 c | 1.0 ± 0.0 cd | 34.5 ± 1.1 abc | 3.3 ± 0.1 a |
H | 94.1 ± 41.9 c | 24.3 ± 0.8 | 8.9 ± 31.6 bc | 5.9 ± 0.2 a | 11.5 ± 0.5 d | 0.4 ± 0.0 a | 62.3 ± 1.1 d | 15.2 ± 0.5 e |
Mudflat Site | CH4 Emission | Temperature | ORP | pH | Salinity | Bulk Density | Water Content | Organic Matter |
---|---|---|---|---|---|---|---|---|
(µmol-CH4 m−2 h−1) | (°C) | (mV) | (psu) | (g cm−3) | (%) | (%) | ||
C | 1.1 ± 0.3 a | 24.1 ± 1.3 | 17.3 ± 28.4 | 7.0 ± 0.1 | 2.7 ± 0.2 | 1.0 ± 0.0 a | 35.2 ± 0.8 b | 3.6 ± 0.2 d |
D | 3.4 ± 0.5 b | 23.0 ± 1.5 | −93.8 ± 24.3 | 7.0 ± 0.1 | 3.1 ± 0.4 | 1.1 ± 0.0 ab | 34.4 ± 0.9 b | 3.5 ± 0.3 cd |
E2 | 0.5 ± 0.1 a | 26.3 ± 1.3 | −58.7 ± 15.3 | 7.2 ± 0.0 | 3.1 ± 0.1 | 1.2 ± 0.0 b | 32.4 ± 0.9 b | 1.9 ± 0.1 bc |
F | 0.5 ± 0.2 a | 28.5 ± 1.5 | −17.7 ± 25.3 | 7.1 ± 0.1 | 2.8 ± 0.5 | 1.4 ± 0.0 c | 20.0 ± 1.0 a | 1.0 ± 0.1 a |
G | 1.8 ± 0.5 ab | 26.3 ± 1.2 | −137.7 ± 56.0 | 7.0 ± 0.1 | 3.6 ± 0.8 | 1.3 ± 0.0 c | 24.6 ± 1.6 a | 1.6 ± 0.1 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-W.; Kao, Y.-C.; Lin, W.-J.; Ho, C.-W.; Lin, H.-J. Effects of Pneumatophore Density on Methane Emissions in Mangroves. Forests 2021, 12, 314. https://doi.org/10.3390/f12030314
Lin C-W, Kao Y-C, Lin W-J, Ho C-W, Lin H-J. Effects of Pneumatophore Density on Methane Emissions in Mangroves. Forests. 2021; 12(3):314. https://doi.org/10.3390/f12030314
Chicago/Turabian StyleLin, Chiao-Wen, Yu-Chen Kao, Wei-Jen Lin, Chuan-Wen Ho, and Hsing-Juh Lin. 2021. "Effects of Pneumatophore Density on Methane Emissions in Mangroves" Forests 12, no. 3: 314. https://doi.org/10.3390/f12030314
APA StyleLin, C. -W., Kao, Y. -C., Lin, W. -J., Ho, C. -W., & Lin, H. -J. (2021). Effects of Pneumatophore Density on Methane Emissions in Mangroves. Forests, 12(3), 314. https://doi.org/10.3390/f12030314