Warming Increases the Carbon Sequestration Capacity of Picea schrenkiana in the Tianshan Mountains, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tree-Ring Samples and Climate Change Data Collection
2.3. Dendrochronological Study and Annual Carbon Sequestration Calculation
2.4. Classification and Regression Tree Model (CART Model) and Statistical Analyses
3. Results
3.1. Mean Carbon Sequestration Potential Capacity Chronologies
3.2. PotentialClimatic Causes of Carbon Sequestration Capacity Change
3.3. Contribution of Temperature to Carbon Sequestration
4. Discussion
5. Conclusions
- (1)
- Tree-ring width of P. schrenkiana could be utilized as a useful and effective estimator of productivity, carbon sequestration capacity, and carbon storage of P. schrenkiana forest in the Tianshan Mountains if the tree-ring samples were obtained along different altitudes and different ages of the forests.
- (2)
- Temperature, especially minimum temperature, was the key climatic driver affecting carbon sequestration potential capacity changes in aboveground biomass of P. schrenkiana in the Tianshan Mountains, as shown by CART, and which positively contributed more than 75% of the variation of carbon sequestration.
- (3)
- If the temperature in winter, especially the minimum temperature, exhibits a continuous rise in the future as it has in the past decades, the carbon sequestration potential capacity of P. schrenkiana forest in the Tianshan Mountains would increase significantly.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rieger, I.; Kowarik, I.; Cherubini, P.; Cierjacks, A. A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales. Sci. Total Environ. 2017, 574, 1261–1275. [Google Scholar] [CrossRef]
- Read, D.J.; Beerling, D.J.; Cannell, M.; Cox, P.; Curran, P.; Grace, J.; Ineson, P.; Jarvis, P.; Malhi, Y.; Powlson, D.; et al. The Role of Land Carbon Sinks in Mitigating Global Climate Change; Policy Document; The Royal Society: London, UK, 2001. [Google Scholar]
- Quéré, C.L.E.; Andrew, R.M.; Canadell, J.G.; Moriarty, R. Global Carbon Budget 2016. Earth Syst. Sci. Data 2016, 7, 521–610. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Gao, X.L.; Fu, C.; Yu, G.R.; Liu, Z.Y. Estimation of carbon sequestration potential of forest biomass in China based on National Forest Resources Inventory. Acta Ecol. Sin. 2019, 39, 4002–4010. [Google Scholar]
- Grassi, G.; House, J.; Dentener, F.; Federici, S.; Elzen, M.D.; Penman, J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 2017, 7, 220–226. [Google Scholar] [CrossRef]
- IPCC. Summary for policy makers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA; Cambridge, UK, 2007. [Google Scholar]
- Chen, J.; Yang, H. Advances and frontiers in global forest and harvested wood products carbon science. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2018, 42, 1–8, (In Chinese with English Abstract). [Google Scholar]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Clark, J.S.; Bell, D.M.; Hersh, M.H.; Nichols, L. Climate change vulnerability of forest biodiversity: Climate and competition tracking of demographic rates. Glob. Chang. Biol. 2011, 17, 1834–1849. [Google Scholar] [CrossRef]
- Savage, K.E.; Parton, W.J.; Davidson, E.A.; Trumbore, S.E.; Frey, S.D. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Glob. Chang. Biol. 2013, 19, 2389–2400. [Google Scholar] [CrossRef] [Green Version]
- Melillo, J.M.; Steudler, P.A.; Aber, J.D.; Newkirk, K.; Lux, H.; Bowles, F.P.; Catricala, C.; Magill, A.; Ahrens, T.; Morrisseau, S. Soil warming and carbon-cycle feedbacks to the climate system. Science 2002, 298, 2173–2176. [Google Scholar] [CrossRef]
- Goulden, M.L.; Wofsy, S.C.; Harden, J.W.; Trumbore, S.E.; Crill, P.M.; Gower, P.M.; Fries, S.T.; Daube, B.C.; Fan, S.M.; Sutton, D.J.; et al. Sensitivity of boreal forest carbon balance to soil thaw. Science 1998, 279, 214–217. [Google Scholar] [CrossRef] [Green Version]
- Melillo, M.J.; Butler, S.; Johnson, J.; Mohan, J.; Steudler, P.; Lux, H.; Burrows, E.; Bowles, F.; Smith, R.; Scott, L.; et al. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc. Natl. Acad. Sci. USA 2011, 108, 9508–9512. [Google Scholar] [CrossRef] [Green Version]
- Strömgren, M.; Linder, S. Effects of nutrition and soil warming on stem wood production in a boreal Norway spruce stand. Glob. Chang. Biol. 2002, 8, 1194–1204. [Google Scholar] [CrossRef]
- Jarvis, P.G.; Linder, S. Constraints to growth of boreal forests. Nature 2000, 405, 904–905. [Google Scholar] [CrossRef] [PubMed]
- Sutfin, N.A.; Wohl, E.E.; Dwire, K.A. Banking carbon: A review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surf. Process. Land 2016, 41, 38–60. [Google Scholar] [CrossRef]
- Pichancourt, J.; Firn, J.; Chadès, I.; Martin, T.G. Growing biodiverse carbon-rich forests. Glob. Chang. Biol. 2014, 20, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Oren, R.; Näholm, T.; Strögren, M.; Lundmark, T.; Grip, H.; Linder, S. Boreal forest biomass accumulation is not increased by two decades of soil warming. Nat. Clim. Chang. 2019, 9, 49–52. [Google Scholar] [CrossRef]
- Rieger, I.; Kowarik, I.; Cierjacks, A. Drivers of carbon sequestration by biomass compartment of riparian forests. Ecosphere 2015, 6, 185. [Google Scholar] [CrossRef] [Green Version]
- Berner, L.T.; Beck, P.S.A.; Bunn, A.G.; Goetz, S.J.; Beck, P.S.A. Plant response to climate change along the forest-tundra ecotone in north eastern Siberia. Glob. Chang. Biol. 2013, 19, 3449–3462. [Google Scholar]
- Stegen, J.C.; Swenson, N.G.; Enquist, B.J.; White, E.P.; Phillips, O.L.; Jørgensen, P.M.; Weiser, M.D.; Monteagudo, M.A.; Nez, V.P. Variation I nabove-ground forest biomass across broad climatic gradients. Glob. Ecol. Biogeogr. 2011, 20, 744–754. [Google Scholar] [CrossRef]
- Su, H.; Sang, W.; Wang, Y.; Ma, K. Simulating Picea schrenkiana forest productivity under climatic changes and atmospheric CO2 increase in Tianshan Mountains, Xinjiang Autonomous Region, China. For. Ecol. Manag. 2007, 246, 273–284. [Google Scholar] [CrossRef]
- Ni, J. Forest productivity of the Altay and Tianshan Mountains in the dryland, northwestern China. For. Ecol. Manag. 2004, 202, 13–22. [Google Scholar] [CrossRef]
- Wang, T.; Liang, Y.; Ren, H.; Yu, D.; Ni, J.; Ma, K. Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains, northwestern China. For. Ecol. Manag. 2004, 196, 267–274. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S. A study on biomass and net productivity of Picea schrenkiana var. tianshanica forest. Chin. J. Appl. Ecol. 1999, 10, 389–391, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.S.; Wang, X.L.; Zhou, L.S. A preliminary study on the biomass determination of Picea schrenkiana forest. J. Xinjiang Agric. Univ. 1980, 3, 19–25, (In Chinese with English Abstract). [Google Scholar]
- Qiu, L.; Zheng, J.H.; Wang, L.; Xuan, J.W.; Gao, Y.Q.; Luo, L. Spatiotemporal variation in the carbon sequestration rate of Larixsibirica in Xinjiang. Acta Ecol. 2018, 38, 6953–6963. [Google Scholar]
- Sun, X.J.; Chang, S.L.; Zhang, Y.T.; Li, J.M. The variations in plant functional traits and forest carbon content with altitudinal gradients in the Tianshan Mountains. Ecol. Sin. 2018, 38, 4994–5005. [Google Scholar]
- Xu, W.Q.; Yang, L.; Chen, X.; Gao, Y.Q.; Wang, L. Carbon storage, spatial distribution and the influence factors in Tianshan forests. Chin. J. Plant Ecol. 2016, 40, 364–373. [Google Scholar]
- Zheng, S.L. Research on Biomass, Carbon Storage and Spatial Distribution of Picea schrenkiana and Larixsibirica in Xinjiang Tianshan and Altay Mountains. Master’s Thesis, Xinjiang University, Ürümqi, China, 2016. [Google Scholar]
- Wu, C.; Xu, G.; Chen, T.; Liu, X.; Zhang, Y.; An, W.; Wang, W.; Fang, Z.; Yu, S. Age-dependent tree-ring growth responses of Schrenk spruce (Picea schrenkiana) to climate—A case study in the Tianshan Mountain. Dendrochronologia 2013, 31, 318–326. [Google Scholar] [CrossRef]
- Yu, S.; Yuan, Y.; Wei, W.; Chen, F.; Zhang, T.; Shang, H.; Zhang, R.; Qing, L. A 352-year record of summer temperature reconstruction in the western Tianshan Mountains, China, as deduced from tree-ring density. Quat. Res. 2013, 80, 158–166. [Google Scholar] [CrossRef]
- Chen, F.; Shang, H.; Yuan, Y. Dry/wet variations in the eastern Tien Shan (China) since AD1725 based on Schrenk spruce (Picea schrenkiana Fisch. et Mey) tree rings. Dendrochronologia 2016, 40, 110–116. [Google Scholar] [CrossRef]
- Ding, Y.; Zang, R.; Huang, J.; Xu, Y.; Lu, X.; Guo, Z.; Ren, W. Intraspecific trait variation and neighborhood competition drive community dynamics in an old-growth spruce forest in northwest China. Sci. Total Environ. 2019, 678, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, Y.; Zhu, C.; Li, Z.; Fu, A. Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: Evidence from tree-rings of Populus euphratica. Ecol. Indic. 2020, 111, 105997. [Google Scholar] [CrossRef]
- Brienen, R.J.W.; Gloor, E.; Zuidema, P.A. Detecting evidence for CO2 fertilization from tree ring studies: The potential role of sampling biases. Glob. Biogeochem. Cycles 2012, 26, GB1025. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Hao, X.; Zhao, Y.; Fang, G.; Yang, Y. Tree rings: A key ecological indicator for reconstruction of groundwater depth in the lower Tarim River, Northwest China. Ecohydrology 2019. [Google Scholar] [CrossRef]
- Friedman, M.J.; Stricker, A.C.; Csank, Z.A.; Zhou, H. Effects of age and environment on stable carbon isotope ratios in tree rings of riparian Populus. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 524, 25–32. [Google Scholar] [CrossRef]
- Meko, D.M.; Friedman, J.M.; Touchan, R.; Edmondson, J.R.; Griffin, E.R.; Scott, J.A. Alternative standardization approaches to improving streamflow reconstructions with ring-width indices of riparian trees. Holocene 2015, 25, 1093–1101. [Google Scholar] [CrossRef]
- Giese, L.A.; Aust, W.M.; Kolka, R.K.; Trettin, C.C. Biomass and carbon pools of disturbed riparian forests. For. Ecol. Manag. 2003, 180, 493–508. [Google Scholar] [CrossRef]
- De’ath, G.; Fabricius, K. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Fang, G.; Yang, J.; Chen, Y.; Xu, C.; De Maeyer, P. Contribution of meteorological input in calibrating a distributed hydrologic model in a watershed in the Tianshan Mountains, China. Environ. Earth Sci. 2015, 74, 2413–2424. [Google Scholar] [CrossRef]
- Dixon, R.K.; Brown, S.; Houghton, R.A.; Solomon, A.M.; Trexler, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Schelhaas, M.J. Spatial distribution of whole tree carbon stocks and fluxes across the forest of Europe: Where are the options for bio-energy. Biomass Bioenergy 2003, 24, 311–320. [Google Scholar] [CrossRef]
- Goodale, C.L.; Apps, M.J.; Birdsey, R.A.; Field, C.B.; Heath, L.S.; Houghton, R.A.; Jenkins, J.C.; Kohlmaier, G.H.; Kurz, W.; Liu, S.R.; et al. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 2002, 12, 891–899. [Google Scholar] [CrossRef]
- Fang, J.Y.; Chen, A.P. Dynamic forest biomass carbon pools in China and their significance. Acta Bot. Sin. 2001, 43, 967–973, (In Chinese with English Abstract). [Google Scholar]
- Jenkins, J.C.; Birdsey, R.A.; Pan, Y. Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data. Ecol. Appl. 2001, 11, 1174–1193. [Google Scholar] [CrossRef]
- Lunt, H.P.; Fyfe, M.R.; Tappin, D.A. Role of recent climate change on carbon sequestration in peatland systems. Sci. Total Environ. 2019, 667, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Friend, A.D.; et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Chang. Biol. 2001, 7, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.K.; Woodward, F.I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob. Chang. Biol. 1998, 4, 185–198. [Google Scholar] [CrossRef]
- Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Moore, B., III; Vorosmarty, C.J.; Scholss, A.L. Global climate change and terrestrial net primary production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- Zhou, G.S.; Wang, Y.H.; Jiang, Y.L.; Yang, Z.Y. Estimating biomass and net primary production from forest inventory data: A case study of China’s Larix forests. For. Ecol. Manag. 2002, 169, 149–157. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S. Productivity pattern of Picea schrenkiana var. tianshanica forest. Acta Phytoecol. Sin. 2000, 24, 186–190, (In Chinese with English Abstract). [Google Scholar]
- Guo, Z.D.; Hu, H.F.; Li, P.; Li, N.Y.; Fang, J.Y. Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Sci. China Life Sci. 2013, 56, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Bao, W.; Bongers, F.; Chen, B.; Chen, G.; Guo, K.; Jiang, M.; Lai, J.; Lin, D.; Liu, C.; et al. Drivers of tree carbon storage in subtropical forests. Sci. Total Environ. 2019, 654, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Piao, S.; Wang, T. Future biomass carbon sequestration capacity of Chinese forests. Sci. Bull. 2018, 63, 1108–1117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, J.F.; Chen, Y.D.; Chen, X.H. Observed changes of temperature extremes during 1960–2005 in China: Natural or human-induced variations? Theor. Appl. Climatol. 2011, 106, 417–431. [Google Scholar] [CrossRef]
- Wang, J.S.; Fei, X.L.; Wei, F. Further study of temperature change in northwest China in recent 50 years. J. Desert Res. 2008, 28, 724–732, (In Chinese with English Abstract). [Google Scholar]
- Li, B.; Chen, Y.; Shi, X. Why does the temperature rise faster in the arid region of northwest China? J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Zhu, Z. Plant responses to high temperature: A view from pre-mRNA alternative splicing. Plant Mol. Biol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Z.; Huang, B.R. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 2000, 40, 503–510. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M. Heat tolerance in plants: An overview. Environ. Exp. 2007, 61, 199–223. [Google Scholar] [CrossRef]
Model | Response Variables | Predictor Variables |
---|---|---|
Classification and regression tree model (CART) | Mean annual carbon sequestration potential capacity of: -P. schrenkiana in the Tianshan Mountains | Climatic Parameters |
Temperature | ||
| ||
| ||
| ||
Precipitation | ||
| ||
Wind velocity | ||
| ||
Sunshine duration | ||
| ||
Relative humidity | ||
|
Item | Average Aboveground Biomass per Tree (kg) | Average Aboveground Biomass per Hectare (t·ha−1) | Mean Carbon Density per Hectare (t·ha−1) | Total Carbon Storage of P. schrenkiana Forest (Tg C) |
---|---|---|---|---|
Woody | 178.09 ± 17.42 | 216.38 ± 29.84 | 108.19 ± 9.02 | 33.93 ± 1.31 |
Bark | 18.06 ± 1.24 | 21.94 ± 1.86 | 10.97 ± 1.04 | 3.44 ± 0.25 |
Branches | 48.85 ± 8.13 | 59.35 ± 4.39 | 29.67 ± 2.98 | 9.31 ± 0.67 |
Leaves | 17.83 ± 1.01 | 21.66 ± 2.01 | 10.83 ± 0.76 | 3.40 ± 0.13 |
Sum | 262.82 ± 7.72 | 319.33 ± 13.59 | 159.66 ± 3.84 | 50.08 ± 0.53 |
Variables | Carbon Sequestration Capacity | Variables | Carbon Sequestration Capacity |
---|---|---|---|
PGS | 0.2058 | PGY | 0.3170 * |
SGS | 0.3716 ** | SGY | 0.186 |
TmeanGS | 0.3614 ** | TmeanGY | 0.4523 ** |
TminGS | 0.4690 ** | TminGY | 0.5446 ** |
TmaxGS | 0.3947 ** | TmaxGY | 0.2738 |
RGS | 0.006 | RGY | 0.1236 |
WGS | −0.4467 ** | WGY | −0.4060 ** |
PDS | 0.3541 ** | PPGY | 0.4213 ** |
SDS | −0.2850 * | SPGY | 0.0432 |
TmeanDS | 0.3704 ** | TmeanPGY | 0.3798 ** |
TminDS | 0.4945 ** | TminPGY | 0.5177 ** |
TmaxDS | 0.0104 | TmaxPGY | 0.1605 |
RDS | 0.148 | RPGY | 0.1433 |
WDS | −0.3693 ** | WPGY | −0.4577 ** |
Variables | Tolerance | VIF | Variables | Tolerance | VIF |
---|---|---|---|---|---|
PGS | 0.4968 | 2.0129 | TminGY | 0.0000 | 117,778.4100 |
PDS | 0.4265 | 2.3448 | TminPGY | 0.0070 | 143.6409 |
PGY | 0.0000 | TmaxGS | 0.0035 | 287.5557 | |
PPGY | 0.4071 | 2.4566 | TmaxDS | 0.0017 | 580.6444 |
SDS | 0.0954 | 10.4862 | TmaxGY | 0.0011 | 921.6222 |
SGS | 0.0000 | TmaxPGY | 0.0122 | 81.9503 | |
SGY | 0.2545 | 3.9297 | RGS | 0.07962 | 12.5594 |
SPGY | 0.1715 | 5.8301 | RDS | 0.0658 | 15.1959 |
TmeanGS | 0.0131 | 76.2878 | RGY | 0.0000 | 438,094.9000 |
TmeanDS | 0.0043 | 234.0927 | RPGY | 0.0390 | 25.6147 |
TmeanGY | 0.0000 | 32,371.0178 | WGS | 0.0004 | 2709.2722 |
TmeanPGY | 0.0038 | 264.9590 | WDS | 0.0007 | 1421.7260 |
TminGS | 0.0280 | 35.7219 | WGY | 0.0001 | 7033.4315 |
TminDS | 0.0112 | 89.6770 | WPGY | 0.0861 | 11.6160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Chen, Y.; Zhu, C.; Chen, Y.; Yang, Y.; Li, W.; Chen, S. Warming Increases the Carbon Sequestration Capacity of Picea schrenkiana in the Tianshan Mountains, China. Forests 2021, 12, 1066. https://doi.org/10.3390/f12081066
Zhou H, Chen Y, Zhu C, Chen Y, Yang Y, Li W, Chen S. Warming Increases the Carbon Sequestration Capacity of Picea schrenkiana in the Tianshan Mountains, China. Forests. 2021; 12(8):1066. https://doi.org/10.3390/f12081066
Chicago/Turabian StyleZhou, Honghua, Yaning Chen, Chenggang Zhu, Yapeng Chen, Yuhai Yang, Weihong Li, and Shifeng Chen. 2021. "Warming Increases the Carbon Sequestration Capacity of Picea schrenkiana in the Tianshan Mountains, China" Forests 12, no. 8: 1066. https://doi.org/10.3390/f12081066
APA StyleZhou, H., Chen, Y., Zhu, C., Chen, Y., Yang, Y., Li, W., & Chen, S. (2021). Warming Increases the Carbon Sequestration Capacity of Picea schrenkiana in the Tianshan Mountains, China. Forests, 12(8), 1066. https://doi.org/10.3390/f12081066