The Hydrological Impact of Extreme Weather-Induced Forest Disturbances in a Tropical Experimental Watershed in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Watersheds
2.2. Data
2.3. Methods
2.3.1. Quantification of Forest Disturbances
2.3.2. Trend Analysis
2.3.3. Quantifying the Effects of Climate Variability, Forest Disturbances and Other Factors on Streamflow
2.3.4. Quantifying the Effect of Forest Disturbances on High Flows and Low Flows
3. Results
3.1. Trend Analysis of Hydrological, Climatic and Forest Disturbance Variables
3.2. Effects of Forest Disturbances on Annual and Seasonal Streamflow
3.2.1. Annual and Seasonal Streamflow Variations Attributed to Non-Climatic Factors
3.2.2. Annual and Seasonal Streamflow Variations Attributed to Forest Disturbances
3.3. Effects of Forest Disturbances on High Flows and Low Flows
4. Discussion
4.1. Forest Changes Due to Typhoon and Cold Wave
4.2. Annual/Seasonal Streamflow Response to Forest Disturbances
4.3. The Effect of Forest Disturbances on High Flow and Low Flow
4.4. Implications for Watershed Management
4.5. Uncertainties Assciated with LAI Data
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Sahin, V.; Hall, M.J. The effects of afforestation and deforestation on water yields. J. Hydrol. 1996, 178, 293–309. [Google Scholar] [CrossRef] [Green Version]
- Stednick, J.D. Monitoring the effects of timber harvest on annual water yield. J. Hydrol. 1996, 176, 79–95. [Google Scholar] [CrossRef]
- Andréassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; Mcmahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Moore, R.D.; Wondzell, S.M. Physical hydrology and the effects of forest harvesting in the Pacific Northwest: A review. JAWRA J. Am. Water Resour. Assoc. 2010, 41, 763–784. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; A-Arancibia, J.L.P.; Bruijnzeel, L.A. Land cover and water yield: Inference problems when comparing catchments with mixed land cover. Hydrol. Earth Syst. Sci. 2012, 16, 3461–3473. [Google Scholar] [CrossRef] [Green Version]
- Floren, A.; Linsenmair, K.E. The influence of anthropogenic disturbances on the structure of arboreal arthropod communities. Plant Ecol. 2001, 153, 153–167. [Google Scholar] [CrossRef]
- Hong, N.M.; Chu, H.J.; Lin, Y.P.; Deng, D.P. Effects of land cover changes induced by large physical disturbances on hydrological responses in Central Taiwan. Environ. Monit. Assess. 2010, 166, 503–520. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Tian, H.; Lu, C.; Xu, X.; Chen, G.; Ren, W. Effects of multiple environment stresses on evapotranspiration and runoff over Eastern China. J. Hydrol. 2012, 426, 39–54. [Google Scholar] [CrossRef]
- Hallema, D.W.; Sun, G.; Caldwell, P.V.; Norman, S.P.; Cohen, E.C.; Liu, Y.; Bladon, K.D.; Mcnulty, S.G. Burned forests impact water supplies. Nat. Commun. 2018, 9, 1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindler, D.W. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 2001, 58, 18–29. [Google Scholar] [CrossRef]
- Stinson, G. Mountain pine beetle and forest carbon feedback to climate change. Nature 2008, 452, 987–990. [Google Scholar]
- Anderegg, W.R.L.; Kane, J.M.; Anderegg, L.D.L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 2013, 3, 30–36. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Schütze, G.; Uhl, E.; Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 2011, 5, 4967. [Google Scholar] [CrossRef] [PubMed]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D. Changes of forest cover and disturbance regimes in the mountain forests of the alps. For. Ecol. Manag. 2016, 388, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Woods, A. Is the health of British Columbia’s forests being influenced by climate change? If so, was this predictable? Can. J. Plant Pathol. 2011, 33, 117–126. [Google Scholar] [CrossRef]
- Stahl, K.; Moore, R.; Mckendry, I. Climatology of winter cold spells in relation to mountain pine beetle mortality in British Columbia, Canada. Clim. Res. 2006, 32, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.A.; Powell, J.A. Ghost forest, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). Am. Entomol. 2001, 47, 160–172. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X. The effects of cumulative forest disturbance on streamflow in a large watershed in the central interior of British Bolumbia, Canada. Hydrol. Earth Syst. Sci. 2012, 16, 2021–2034. [Google Scholar] [CrossRef] [Green Version]
- Lugo, A.E. Visible and invisible effects of hurricanes on forest ecosystems: An international review. Austral Ecol. 2010, 33, 368–398. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamies. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Schlyter, P.; Stjernquist, I.; Bärring, L.; Jönsson, A.; Nilsson, C. Assessment of the impacts of climate change and weather extremes on boreal forests in Northern Europe, focusing on Norway spruce. Clim. Res. 2006, 31, 75–84. [Google Scholar] [CrossRef]
- Bernard, B.; Vincent, K.; Frank, M.; Anthony, E. Comparison of extreme weather events and streamflow from drought indices and a hydrological model in river Malaba, Eastern Uganda. Int. J. Environ. Stud. 2013, 70, 940–951. [Google Scholar] [CrossRef]
- Jayakaran, A.D.; Williams, T.M.; Ssegane, H.; Amatya, D.M.; Song, B.; Trettin, C.C. Hurricane impacts on a pair of coastal forested watersheds: Implications of selective hurricane damage to forest structure and streamflow dynamics. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 11519–11557. [Google Scholar] [CrossRef]
- Clarke, P.J.; Knox, K.J.E.; Bradstock, R.A.; Munoz-Robles, C.; Kumar, L. Vegetation, terrain and fire history shape the impact of extreme weather on fire severity and ecosystem response. J. Veg. Sci. 2014, 25, 1033–1044. [Google Scholar] [CrossRef]
- Harder, P.; Pomeroy, J.W.; Westbrook, C.J. Hydrological resilience of a Canadian rockies headwaters basin subject to changing climate, extreme weather, and forest management. Hydrol. Process. 2015, 29, 3905–3924. [Google Scholar] [CrossRef]
- Hogan, J.A.; Zimmerman, J.K.; Thompson, J.; Nytch, C.J.; Uriarte, M. The interaction of land-use legacies and hurricane disturbance in subtropical wet forest: Twenty-one years of change. Ecosphere 2016, 7. [Google Scholar] [CrossRef]
- Yang, H.; Liu, S.; Cao, K.; Wang, J.; Li, Y.; Xu, H. Characteristics of typhoon disturbed gaps in an old-growth tropical montane rainforest in Hainan Island, China. J. For. Res. 2017, 28, 1231–1239. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Goodrick, S.L.; Outcalt, K.W. Disturbance and coastal forests: A strategic approach to forest management in hurricane impact zones. For. Ecol. Manag. 2007, 250, 119–135. [Google Scholar] [CrossRef]
- Kupfer, J.A.; Myers, A.T.; Mclane, S.E.; Melton, G.N. Patterns of forest damage in a Southern Mississippi landscape caused by hurricane Katrina. Ecosystems 2008, 11, 45–60. [Google Scholar] [CrossRef]
- Amatya, D.M.; Harrison, C.A.; Trettin, C.C. Water quality of two first order forested watersheds in coastal South Carolina. In Proceedings of the Watershed Management to Meet Water Quality Standards and TMDLS (Total Maximum Daily Load), San Antonio, TX, USA, 10–14 March 2007. [Google Scholar]
- Rojas, R.; Feyen, L.; Dosio, A.; Bavera, D. Improving pan-european hydrological simulation of extreme events through statistical bias correction of rcm-driven climate simulations. Hydrol. Earth Syst. Sci. 2011, 15, 2599–2620. [Google Scholar] [CrossRef] [Green Version]
- Stednick, J.D. Long-Term Streamflow Changes Following Timber Harvesting; Springer: New York, NY, USA, 2008; pp. 139–155. [Google Scholar]
- Kirchner, J.W. Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res. 2009, 45, 335–345. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using landsat tm images. Remote Sens. Environ. 1996, 55, 153–162. [Google Scholar] [CrossRef]
- Tian, Y.; Woodcock, C.E.; Wang, Y.; Privette, J.L.; Shabanov, N.V.; Zhou, L.; Zhang, Y.; Buermann, W.; Dong, J.; Veikkanen, B. Multiscale analysis and validation of the MODIS lai product: Ii. Sampling strategy. Remote Sens. Environ. 2002, 83, 431–441. [Google Scholar] [CrossRef]
- Fu, G.-A.; Hong, X.J. Flora of vascular plants of Jianfengling, Hainan Island. Guihaia 2008, 2, 226–229. [Google Scholar]
- Qian, W.C. Effects of deforestation on flood characteristics with particular reference to Hainan Island, China. Int. Assoc. Sci. Hydrol. Publ. 1983, 140, 249–257. [Google Scholar]
- Xu, H.; Li, Y.; Luo, T.S.; Lin, M.X.; Chen, D.X.; Mo, J.H.; Luo, W.; Hong, X.J.; Jiang, Z.L. Community structure characteristics of tropical montane rain forests with different regeneration types in Jianfengling. Sci. Silvae Sin. 2009, 45, 14–20. [Google Scholar]
- Zhou, G.; Chen, B.; Zeng, Q.; Wu, Z.; Li, Y.; Lin, M. Hydrological effects of typhoon and severe tropical storm on the regenerative tropical mountain forest at Jianfengling. Acta Ecol. Sin. 1996, 16, 555–558. [Google Scholar]
- Li, Y. Biodiversity of tropical forest and its protection strategies in Hainan Island, China. Rorest Res. 1995, 8, 455–461. [Google Scholar]
- Zhao, X.; Liang, S.; Liu, S.; Yuan, W.; Xiao, Z.; Liu, Q.; Cheng, J.; Zhang, X.; Tang, H.; Zhang, X. The Global Land Surface Satellite (glass) remote sensing data processing system and products. Remote Sens. 2013, 5, 2436–2450. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Xiang, Y.; Zhao, X.; Song, J. Long-time-series Global Land Surface Satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of general regression neural networks for generating the glass leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2013, 52, 209–223. [Google Scholar] [CrossRef]
- Vermote, E.F.; Vermeulen, A. Atmospheric Correction Algorithm: Spectral Reflectances (mod09). Available online: http://dratmos.geog.umd.edu/files/pdf/atbd_mod09.pdf (accessed on 23 October 2018).
- Pedelty, J.; Devadiga, S.; Masuoka, E.; Brown, M.; Pinzon, J.; Tucker, C.; Vermote, E.; Prince, S.; Nagol, J.; Justice, C. Generating a long-term land data record from the AVHRR and MODIS instruments. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007), Barcelona, Spain, 23–27 July 2007; pp. 1021–1025. [Google Scholar]
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G. Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804–1817. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Jhajharia, D.; Dinpashoh, Y.; Kahya, E.; Singh, V.P.; Fakheri-Fard, A. Trends in reference evapotranspiration in the humid region of Northeast India. Hydrol. Process. 2012, 26, 421–435. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, M.; Meng, Z.; Liu, S.; Sun, P.; Yang, T. Assessing the impact of forest change and climate variability on dry season runoff by an improved single watershed approach: A comparative study in two large watersheds, China. Forests 2018, 9, 46. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, M. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study. Water Resour. Res. 2010, 46, W12525. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X.; Sun, P.; Liu, S. The effect of forest harvesting and climatic variability on runoff in a large watershed: The case study in the Upper Minjiang River of Yangtze River Basin. J. Hydrol. 2012, 464, 1–11. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X.; Li, Q. Do the hydrological responses to forest disturbances in large watersheds vary along climatic gradients in the interior of British Columbia, Canada? Ecohydrology 2017, 10, e1840. [Google Scholar] [CrossRef]
- Liu, W.; Wei, X.; Liu, S.; Liu, Y.; Fan, H.; Zhang, M.; Yin, J.; Zhan, M. How do climate and forest changes affect long-term streamflow dynamics? A case study in the upper reach of Poyang River Basin. Ecohydrology 2015, 8, 46–57. [Google Scholar] [CrossRef]
- Jassby, A.D.; Powell, T.M. Detecting changes in ecological time series. Ecology 1990, 71, 2044–2052. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Tamea, S. Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resour. Res. 2007, 43, W09301. [Google Scholar] [CrossRef]
- Engle, R.; Watson, M. A one-factor multivariate time series model of metropolitan wage rates. Publ. Am. Stat. Assoc. 1981, 76, 774–781. [Google Scholar] [CrossRef]
- Law, T.H.; Umar, R.S.; Zulkaurnain, S.; Kulanthayan, S. Impact of the effect of economic crisis and the targeted motorcycle safety programme on motorcycle-related accidents, injuries and fatalities in Malaysia. Int. J. Inj. Contr. Saf. Promot. 2005, 12, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Wei, X.; Li, Q. A quantitative assessment on the response of flow regimes to cumulative forest disturbances in large snow-dominated watersheds in the interior of British Columbia, Canada. Ecohydrology 2016, 9, 843–859. [Google Scholar] [CrossRef]
- Poulin, R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 2006, 132, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Atkin, O.K.; Edwards, E.J.; Loveys, B.R. Response of root respiration to changes in temperature and its relevance to global warming. New Phytol. 2010, 147, 141–154. [Google Scholar] [CrossRef]
- Saloman, C.H.; Naughton, S.P. Effect of hurricane Eloise on the benthic fauna of Panama city beach, Florida, USA. Mar. Biol. 1977, 42, 357–363. [Google Scholar] [CrossRef]
- Dai, Z.; Amatya, D.M.; Sun, G.; Trettin, C.C.; Li, C.; Li, H. Climate variability and its impact on forest hydrology on South Carolina coastal plain, USA. Atmosphere 2011, 2, 330–357. [Google Scholar] [CrossRef]
- Zhang, J.; van Meerveld, I.H.J.; Waterloo, M.J.; Bruijnzeel, L.A., Sr. Typhoon haiyan’s effects on interception loss from a secondary tropical forest near tacloban, leyte, the Philippines. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Zimmerman, J.K.; Emiii, E.; Waide, R.B.; Lodge, D.J.; Taylor, C.M.; Nvl, B. Responses of tree species to hurricane winds in subtropical wet forest in Puerto Rico: Implications for tropical tree life histories. J. Ecol. 1994, 82, 911–922. [Google Scholar] [CrossRef]
- Latham, R.E.; Ricklefs, R.E.; Ricklefs, R.E.; Schluter, D. Continental Comparisons of Temperate-Zone Tree Species Diversity; University of Chicago Press: Chicago, IL, USA, 1993; pp. 294–314. [Google Scholar]
- Latham, R.E.; Ricklefs, R.E. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 1993, 67, 325–333. [Google Scholar] [CrossRef]
- Wiens, J.J.; Donoghue, M.J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 2004, 19, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, 411. [Google Scholar] [CrossRef]
- Mckinley, V.L.; Vestal, J.R. Biokinetic analysis of adaptation and succession: Microbial activity in composting municipal sewage sludge. Appl. Environ. Microbiol. 1984, 47, 933–941. [Google Scholar] [PubMed]
- Dover, C.L.V.; Lutz, R.A. Experimental ecology at deep-sea hydrothermal vents: A perspective. J. Exp. Mar. Biol. Ecol. 2004, 300, 273–307. [Google Scholar] [CrossRef]
- De, S.B.; Clavel, T.; Clerté, C.; Carlin, F.; Giniès, C.; Nguyenthe, C. Influence of anaerobiosis and low temperature on bacillus cereus growth, metabolism, and membrane properties. Appl. Environ. Microbiol. 2012, 78, 1715–1723. [Google Scholar]
- Hilliard, J.H.; West, S.H. Starch accumulation associated with growth reduction at low temperatures in a tropical plant. Science 1970, 168, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.H.; Botta, A.; Cardille, J.A. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 2003, 283, 206–217. [Google Scholar] [CrossRef]
- Michot, T.C.; Burch, J.N.; Arrivillaga, A.; Rafferty, P.S.; Doyle, T.W.; Kemmerer, R.S. Impacts of Hurricane Mitch on Seagrass Beds and Associated Shallow Reef Communities along the Caribbean Coast of Honduras and Guatemala; U.S. Geological Survey: Reston, VA, USA, 2003.
- Asbjornsen, H.; Goldsmith, G.R.; Alvaradobarrientos, M.S.; Rebel, K.; Osch, F.P.V.; Rietkerk, M.; Chen, J.; Gotsch, S.; Tobón, C.; Geissert, D.R. Ecohydrological advances and applications in plant–water relations research: A review. J. Plant Ecol. 2011, 4, 3–22. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef]
- Graff, J.V.D.; Ahmad, R.; Scatena, F.N. Recognizing the importance of tropical forests in limiting rainfall-induced debris flows. Environ. Earth Sci. 2012, 67, 1225–1235. [Google Scholar] [CrossRef]
- Troch, P.A.; Martinez, G.F.; Pauwels, V.R.N.; Durcik, M.; Sivapalan, M.; Harman, C.; Brooks, P.D.; Gupta, H.; Huxman, T. Climate and vegetation water use efficiency at catchment scales. Hydrol. Process. 2010, 23, 2409–2414. [Google Scholar] [CrossRef]
- Jackson, R.B.; Cook, C.W.; Pippen, J.S.; Palmer, S.M. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology 2009, 90, 3352–3366. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.A.; Creed, I.F.; Hatcher, K.L.; Warren, R.J.; Adams, M.B.; Benson, M.H.; Boose, E.; Brown, W.A.; Campbell, J.L.; Covich, A. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites. Bioscience 2012, 62, 390–404. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.A.; Post, D.A. Seasonal and successional streamflow response to forest cutting and regrowth in the Northwest and Eastern United States. Water Resour. Res. 2004, 40, 191–201. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.Z.; Zhang, X.C.; Zheng, F.L. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Wolter, K.; Timlin, M.S. El Niño/Southern oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.Ext). Int. J. Climatol. 2011, 31, 1074–1087. [Google Scholar] [CrossRef]
Pair | Year | Type | T (°C) | P (mm) | LAI (m2/m2) | △LAI (%) | Disturbed Type |
---|---|---|---|---|---|---|---|
1992 | Reference | 19.6 | 2581.2 | 4.93 | |||
# 1 | 1995 | Disturbed | 19.9 | 2471.2 | 4.74 | 3.85 | Typhoon |
# 2 | 2000 | Disturbed | 19.8 | 2341.2 | 3.97 | 19.47 | Cold wave |
Variables | Kendall Tau | Spearman Rho |
---|---|---|
Annual precipitation | 0.17 | 0.22 |
Dry season precipitation | −0.10 | −0.19 |
Wet season precipitation | 0.10 | 0.14 |
Annual temperature | 0.44 * | 0.62 * |
Dry season temperature | 0.40 * | 0.59 * |
Wet season temperature | 0.34 * | 0.44 * |
Annual evapotranspiration | −0.25 | −0.36 |
Dry season evapotranspiration | −0.50 | −0.09 |
Wet season evapotranspiration | −0.45 * | −0.56 * |
Annual streamflow | 0.23 | 0.31 |
Dry season streamflow | 0.13 | 0.17 |
Wet season streamflow | 0.07 | 0.09 |
Annual LAI | −0.05 | −0.12 |
Dry season LAI | −0.12 | −0.16 |
wet season LAI | 0.01 | −0.06 |
AR Part | Int Part | MA Part | Intervention Part | Model Structure | MS | ||
Change Type | CP (1995) | ||||||
p(1) | d(1) | q(1) | Ω(1) | △(1) | |||
0 | 1 | 0.78 (p = 0.000) | GP | 1.12 (p = 0.011) | −1.00 (p = 0.000) | Ln(x)(0,1,1) | 0.42 |
Period | Wilcoxon Test | Sign Test |
---|---|---|
Reference period (1990–1994) | 0.46 (p = 0.65) | −0.32 (p = 0.75) |
Disturbed period (1995–2005) | 4.11 * (p = 0.00) | 4.48 * (p = 0.00) |
Model Input | Parameter Estimation | |||
---|---|---|---|---|
c | q(1) | Q(1) | LAI (lag(2)) | |
ln ΔQanc: | 7.208 | −0.652 | −0.601 | −0.273 |
ARIMA (0,0,1) (0,0,1) + ΔLAIa (lag(2)) | (p < 0.0001) | (p = 0.0073) | (p = 0.0347) | (p = 0.0401) |
Phase | △Q (mm) | △Qc (mm) | △Qf (mm) | △Qo (mm) | △Qc (%) | △Qf (%) | △Qo (%) | △Q (%) | Rc (%) | Rf (%) | Ro (%) | LAI (m2/m2) | P (mm) | DI | T (°C) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry season 1995–1999 | −24.2 ± 19.3 | −159.1 ± 26.8 | 184.6 ± 89.5 | −49.6 ± 95.1 | −54.9 ± 9.2 | 63.6 ± 30.9 | −17.1 ± 32.8 | −8.3 ± 6.7 | 40.5 ± 10.5 | 46.9 ± 7.0 | 12.6 ± 10.2 | 4.7 | 231.6 | 1.00 | 17.8 |
Dry season 2000–2005 | 153.7 ± 105.0 | −60.9 ± 86.3 | 79.0 ± 68.1 | 135.6 ± 63.5 | −21.0 ± 29.8 | 27.2 ± 23.5 | 46.7 ± 21.9 | 53.0 ± 36.2 | 22.1 ± 8.8 | 28.7 ± 10.5 | 49.2 ± 11.4 | 4.6 | 409.2 | 0.73 | 17.6 |
Dry season 1995–2005 | 72.8 ± 62.1 | −105.5 ± 49.0 | 127.0 ± 54.8 | 51.4 ± 60.0 | −36.4 ± 16.9 | 43.8 ± 18.9 | 17.7 ± 20.7 | 25.1 ± 21.4 | 37.2 ± 6.4 | 44.7 ± 6.4 | 18.1 ± 7.4 | 4.6 | 328.4 | 0.83 | 17.7 |
Wet season 1995–1999 | −269.12 ± 272.0 | −360.4 ± 154.0 | 95.9 ± 133.4 | −4.6 ± 165.7 | −30.7 ± 10.4 | 8.2 ± 11.4 | −0.4 ± 14.1 | −22.9 ± 23.1 | 78.2 ± 12.4 | 20.8 ± 9.8 | 1.0 ± 16.3 | 4.8 | 1880.3 | 0.22 | 22.4 |
Wet season 2000–2005 | 224.3 ± 237.4 | 82.4 ± 122.7 | 151.7 ± 66.7 | −9.7 ± 34.1 | 7.0 ± 13.1 | 12.9 ± 5.7 | −0.8 ± 2.9 | 19.1 ± 20.2 | 33.8 ± 4.5 | 62.2 ± 4.2 | 4.0 ± 5.3 | 4.8 | 2404.9 | 0.16 | 22.3 |
Wet season 1995–2005 | 0.0 ± 186.7 | −118.9 ± 118.6 | 126.3 ± 67.3 | −7.4 ± 72.9 | −10.1 ± 10.1 | 10.8 ± 5.7 | −0.6 ± 6.2 | 0.0 ± 15.9 | 47.1 ± 5.9 | 50.0 ± 5.3 | 2.9 ± 8.3 | 4.8 | 2166.5 | 0.19 | 22.4 |
Annual 1995–1999 | −146.7 ± 134.9 | −259.8 ± 68.1 | 140.3 ± 77.1 | −27.1 ± 90.4 | −35.4 ± 9.4 | 19.2 ± 10.9 | −3.8 ± 10.7 | −20.0 ± 19.1 | 60.8 ± 9.1 | 32.8 ± 8.1 | 6.4 ± 7.8 | 4.8 | 2111.9 | 0.29 | 20.1 |
Annual 2000–2005 | 189.0 ± 124.2 | 10.8 ± 86.9 | 115.3 ± 46.8 | 62.9 ± 40.7 | 1.4 ± 8.2 | 15.8 ± 7.9 | 8.6 ± 4.2 | 25.8 ± 13.8 | 5.7 ± 4.7 | 61.0 ± 0.1 | 33.3 ± 10.6 | 4.7 | 2814.1 | 0.20 | 20.0 |
Annual 1995–2005 | 36.4 ± 96.3 | −112.2 ± 62.6 | 126.7 ± 42.3 | 22.0 ± 46.5 | −15.4 ± 8.3 | 17.2 ± 6.3 | 3.0 ± 5.4 | 5.0 ± 13.1 | 43.0 ± 5.0 | 48.6 ± 6.5 | 8.4 ± 6.5 | 4.7 | 2494.9 | 0.24 | 20.1 |
Pair | Year | Variables | Mann-Whitney U Test | |
---|---|---|---|---|
Z | p-Value | |||
# 1 | 1992 vs. 1995 | Low flow | 0.53 | 0.65 |
High flow | 0.61 | 0.50 | ||
# 2 | 1992 vs. 2000 | Low flow | −2.97 | <0.01 * |
High flow | 0.58 | 0.11 |
R2 | Kendall Tau | |
---|---|---|
Dry season | 0.70 ** | 0.53 ** |
Wet season | 0.80 ** | 0.62 ** |
Annual | 0.86 ** | 0.52 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Zhang, M.; Liu, S.; Sun, P.; Yin, L.; Yang, T.; Li, Y.; Li, Q.; Wei, X. The Hydrological Impact of Extreme Weather-Induced Forest Disturbances in a Tropical Experimental Watershed in South China. Forests 2018, 9, 734. https://doi.org/10.3390/f9120734
Hou Y, Zhang M, Liu S, Sun P, Yin L, Yang T, Li Y, Li Q, Wei X. The Hydrological Impact of Extreme Weather-Induced Forest Disturbances in a Tropical Experimental Watershed in South China. Forests. 2018; 9(12):734. https://doi.org/10.3390/f9120734
Chicago/Turabian StyleHou, Yiping, Mingfang Zhang, Shirong Liu, Pengsen Sun, Lihe Yin, Taoli Yang, Yide Li, Qiang Li, and Xiaohua Wei. 2018. "The Hydrological Impact of Extreme Weather-Induced Forest Disturbances in a Tropical Experimental Watershed in South China" Forests 9, no. 12: 734. https://doi.org/10.3390/f9120734
APA StyleHou, Y., Zhang, M., Liu, S., Sun, P., Yin, L., Yang, T., Li, Y., Li, Q., & Wei, X. (2018). The Hydrological Impact of Extreme Weather-Induced Forest Disturbances in a Tropical Experimental Watershed in South China. Forests, 9(12), 734. https://doi.org/10.3390/f9120734